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Abstract: This study aims to demonstrate a practical way of power estimation for linear mixed models in clinical studies. 

Approximation methods using z and t statistics are discussed and compared to the simulated results. It was found that the 

approximation methods generally provide a slight overestimation of power, relative to simulated results using the Kenward and 

Roger estimation of degree of freedom. However, results of approximation methods can be informative in certain scenarios. In 

conclusion, the z approximation and t approximation with a residual degree of freedom can be useful in certain situations. 

Simulation method can serve as a general solution. 
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1. Introduction 

Linear mixed models and generalized linear models are 

popular choices in the analyses of clinical trial data, 

especially for the studies with longitudinal designs (Cook and 

DeMets, 2007; Laird and Ware, 1982). At the study initiation 

stage, since the process of study planning is usually complex 

and involves various financial factors and parties, a quick 

estimation of sample size is considered very useful for the 

clinical team and decision makers. 

Unfortunately, unlike the simpler cases of comparing 

group means or group proportions, such as classical t test of 

two sample means from normal populations, or the z test, 

for which the sample size calculation (Lachin, 1981; Chow 

et al., 2003; Julious, 2003) is even possible without using a 

calculator, the estimation of sample size for mixed linear 

models is typically complex and the approach is study-

based (Dang et al., 2008; Chen et al., 2008; Vierron and 

Giraudeau, 2006; Heo et al., 2010; Kain et al., 2015; Candel 

and van Breukelen, 2015). Even for the cases of methods 

with some degree of generality (Lu et al., 2009; Liu and 

Liang, 1997; Self and Mauritsen, 1988), the actual 

implementation is more or less limited given their 

complexity. 

In this report, the author presents an approach that is of a 

practical nature and show that approximation methods can be 

useful in the special, but definitely not rare cases, where the 

simplicity of estimation is important. Meanwhile as a general 

solution, a simulation method can be implemented which is 

not much more complicated than the proposed approximation 

methods. 

2. Method 

A general linear mixed model is defined as bellow: 

Y = Xβ + Zγ + ε                               (1) 

Where Y is a n.. by 1 vector. n.. is the total number of 

observations. X is the design matrix for the fixed effects. The 

fix effects are represented by an m by 1 vector β, where m is 

the number of effects. Z is the coefficient for the random 

effect vector γ. Error term ε is a n. by 1 vector. 

It is assumed that γ and ε are normally distributed with 

zero means. The covariance matrix between the random 

vectors is cov�γ, ε� = � 00 �, where G and R are the variance 

covariance matrix of γ and ε respectively. Zeros represent 

zero matrices of appropriate dimensions. 

Define V as the variance-covariance matrix of y, then 

� = ��Z� + �                              (2) 
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In longitudinal clinical studies, usually researchers are 

primarily interested in the comparison of marginal means 

representing the treatment effect for all repeated measures (or 

visits), or for some repeated measures, or at one particular 

measure (Lu et al., 2009).Utilizing the mixed model, such 

marginal means can be compared by identifying and 

analyzing the linear combination of the fixed effect β, i.e., l�β� , when a vector l is properly defined. 

A typical two-sided test of equivalence can take the form 

H0: l′β=0 and H1: l′β≠0. Whereas a non-inferiority test could 

take the form H0: l′β≤∆ and H1: l′β>∆. where ∆ represents a 

non-inferiority margin. 

To determine the power of such tests, a straightforward 

approach is to consider the following statistic: t = 
 ����

�������� 
(Lu et al., 2009; Heo et al., 2010), where SE standards for 

the standard error. When V (2) is unknown, the 

distribution of t is unknown (McCulloch and Searle, 

2001). However, one can assume that using an estimate of 

V, t follows a central t distribution under the null 

hypothesis of the two sided test with an unknown degree 

of freedom (Rencher and Schaalje, 2008; Kenward and 

Roger, 1997). In such a manner, one can perform a t test 

with an estimated degree of freedom. 

It is then natural to apply the method commonly used to 

determine the power of t tests to get the power estimates. 

This takes the approximate form (Chow et. al, 2008): 

β = T� !"#$,% , v|  |����|
���������)                         (3) 

where α, β are type I and type II error rates. T(X,v|B) is the 

cumulative t distribution function for X, with v degree of 

freedom and a non-centrality parameter of B.  !"#$,%  is the 

(1 − )
*)x 100-th quantile of the t distribution of v degree of 

freedom. 

Alternatively, a Z test for large samples (Rencher and 

Schaalje, 2008) can be similarly defined by assuming an 

asymptotic normal distribution of the test statistic z = 
 |���|�

��������, 
in this case the power can be approximately formulated as 

(Chow et. al, 2008),: 

Φ�  |���|�
��,����- − �!"#$�                            (4) 

where Φ is the cumulative distribution function of the 

standard normal variable. �!"#$  is the (1 − )
*)x100-th quantile 

of the standard normal distribution. 

Consider the maximum likelihood estimate of β�  (Lu et al., 

2009), the ./,l�β�- can be specified (McCulloch and Searle, 

2001) by taking the square root of  

var,l�β�- = 2′�3�"!3�"2                          (5) 

The terms on the right hand side as well as the raw effect l�β� , are assumed to be known in the sense that the effect size 

is known, to be able to produce estimations of power.  

 

3. A Simulation Study of a Typical 

Problem 

In a hypothetical single-center, randomized study, subjects 

either receive the study drug or the placebo in a randomized 

manner, and are followed at two study visits. A continuous 

response (which could be the reduction of blood pressure, for 

example, if this is an antihypertensive drug study) is 

measured at the each of two study visits. A linear mixed 

model can be specified in the following manner using the (1): 

β� = �4 5! 5* 56 57�, 

where the last four elements of the vector represent the fixed 

effect for treatment of investigated drug and placebo, and the 

time effect of first visit and second visit, respectively. The 

model does not include an interaction effect for simplicity. 

Also this is for the consideration that an interaction effect is 

not always present for clinical trial data. 

X89 = 1 1 01 1 0 1 00 1 

X:9 = 1 0 11 0 1 1 00 1 

If there is no missing observation, the submatrices of X 

can be arranged as above. The capitalized subscript indicates 

the treatment (A=Investigated drug, B=Placebo) and i means 

the i=th subject in the respective treatment group. If there are 

missing observations for a subject, the number of rows for 

submatrix corresponding to the subject will be less than the 

number of visits. 

The matrix X can be defined as X = �X8!′ X8*′ ⋯ X:!′ X:*′ ⋯) ′. The Z matrix is of 

the block diagonal form: 

� = <=* ⋯ 0⋮ ⋱ ⋮0 ⋯ =*
@, 

where J2 is a 2 by 1 vector of 1s, if there is no missing 

observations. If there are missing observations, 1 should 

replace J2 if one of the two observations is missing. 

A random effect of subject is defined. For simplicity, 

define that: 

γ~N�0, G� = N�0, D!*EF� 

ε~N�0, R� = N�0, D*EF..� 

where EF is the identify matrix of the rank n, which is number 

of subjects. D!* and D* are variance components.  

Unless otherwise specified, simulations were performed by 

using the following parameters: β� = �5 1 0 0.5 0� , D!* = 2, D* = 1. 

In every scenario where the sample size, the treatment 

assignment ratio and the missing data proportion etc. are 

varied, 1000 samples were generated using the linear mixed 

model. Data were fitted using PROC MIXED in SAS 9.3 

software with a correct specification of the model and various 
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options of degree of freedom methods. 

The least squares means (Khuri, 2010) of the effect 

“treatment” were estimated and a test of equivalence of the 

treatment least squares means was performed as described 

earlier in the text. The simulated power is the proportion of 

rejected tests to the total number of tests performed. 

Analytically, the difference of least squares means for the 

treatment effect is l�β� , where l� = �0 1 −1 0 0�. 

4. Results 

Table 1. Summary of estimated and simulated result of power for data without missing observations. N is the total number of subjects. Ratio is defined as 

number of subjects receiving the investigated drug divided by the number of subjects receiving placebo. LSDiff is the true difference of least squares means for 

the factor treatment, the other parameters are set as described in the main text. RES represents the residual degree of freedom. KD represents the Kenward 

Roger method for estimating the degree of freedom. Power means the estimated power for a given method. Simulation stands for the simulated power for a 

given method. 

N Df RES Df KD Median Power Z Power T RES Power T KD Simulation RES Simulation KD 

Ratio=1, LSDiff=1 

20 37 18 0.293 0.280 0.267 0.29 0.266 

50 97 48 0.609 0.60 0.591 0.621 0.603 

80 157 78 0.807 0.803 0.798 0.804 0.801 

100 197 98 0.885 0.882 0.872 0.871 0.869 

Ratio=2, LSDiff=1 

20 37 18 0.271 0.259 0.248 0.257 0.238 

50 97 48 0.563 0.555 0.546 0.536 0.519 

80 157 78 0.763 0.758 0.752 0.752 0.744 

100 197 98 0.845 0.841 0.838 0.851 0.849 

Ratio=1, LSDiff=0.5 

20 37 18 0.105 0.102 0.099 0.138 0.124 

50 97 48 0.20 0.197 0.194 0.208 0.197 

80 157 78 0.293 0.29 0.287 0.27 0.267 

100 197 98 0.352 0.35 0.347 0.312 0.305 

 

Table 1 shows the power estimates using z test, and t test 

method for the data without missing observations. The degree 

of freedom based on the residual method is shown. The 

median of degree of freedom based on the Kenward-Roger 

(KR) method is also shown. The t estimation of power given 

KR degree of freedom is based on such a median. Taking the 

simulated power as the reference, the overestimation of 

power by z test method can be observed. For the estimated 

degree of freedom method, the residual method leads to an 

overestimation of power relative to the KR method. There is 

corresponding change of power when the parameters of the 

model changes. As an example, by comparing the block at 

the top with the block at the middle of table 1, the effect of 

ratio of subject number between two treatments on power can 

be identified. The block at the bottom of table 1 shows the 

drop of power when the effect size decreases.  

Table 2. Summary of estimated and simulated results for power for data with missing observations. The missing mechanism is assumed to be missing 

completely at random. P missing stands for the probability of missing. N is the total number of subjects. Ratio is defined as number of subjects receiving the 

investigated drug divided by the number of subjects receiving placebo and is set to 1. LSDiff is the true difference of least squares means for the factor 

treatment, the other parameters are set as described in the main text. RES represents the residual degree of freedom. KD represents the Kenward Roger method 

for estimating the degree of freedom. Power means the estimated power for a given method. Simulation stands for the simulated power for a given method. 

N Df RES Df KD Median Power Z Power T RES Power T KD Simulation RES Simulation KD 

Ratio=1, LSDiff=1, P missing=0.1 

20 37 18.1 0.293 0.280 0.267 0.29 0.266 

50 97 47.98 0.609 0.60 0.591 0.621 0.603 

80 157 78.0 0.807 0.803 0.798 0.804 0.801 

100 197 97.9 0.885 0.882 0.872 0.871 0.869 

Ratio=1, LSDiff=1, P missing=0.2 

20 37 17.98 0.271 0.259 0.248 0.257 0.238 

50 97 47.9 0.563 0.555 0.546 0.536 0.519 

80 157 77.7 0.763 0.758 0.752 0.752 0.744 

100 197 97.6 0.845 0.841 0.838 0.851 0.849 

 

Table 2 demonstrates the power estimates when some of 

the observations are missing. In this case missing completed 

at random is assumed, i.e. the missing status of an 

observation is independent of the observed or non-observed 

value of the data. As the percentage of the missing data 

increases, there is a corresponding drop of power as 

predicted. In line with table 1, the overestimation of power 

by the z test method and the overestimation of the degree of 
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freedom by residual degree of freedom are demonstrated. 

When the missing data is introduced, one of the results in 

simulation is that the estimated degree of freedom tends to 

deviate further from an integer value, as can be seen for the 

median degree of freedoms of the KR method. 

5. Discussion 

As demonstrated in the results, method of z test gives 

overestimation of the power. This is due to the assumption of 

large sample. Residual degree of freedom method is based on 

the assumption that correlational structure of the data is 

ignored (Schaalje et al., 2002). KR method is based on 

corrected estimation of var�l�5K�, where 5K is the estimation of 

β, taking into account the underestimation by using the 

asymptotic variance covariance matrix ( 2′�3�"!3�"2 ) for var�l�5K� , and the bias of estimation when the estimated 

variance covariance matrix is used in estimating 2′�3�"!3�"2  (Kenward and Roger, 1997; McCulloch and 

Searle, 2001). There are other methods of identifying the 

degree of freedoms, such containment methods, Satterthwaite 

method (Schaalje et al., 2002), those methods are not 

evaluated in the current study. 

Assume that the KR method is the method of choice in 

data analysis, it is obvious that the most general approach for 

the power estimation is to get simulated result using the very 

method. From the perspective of the t approximation method, 

simulation is basically needed to get the estimated degree of 

freedom. This is because that, for the Satterthwaite type of 

degree of freedom (Satterthwaite, 1946; Kenward and Roger, 

1997; Rencher and Schaalje, 2008), both the estimated 

variance covariance matrix of y, and the sample variance 

covariance matrix of the variance components are needed 

besides the knowledge of other terms which are specified 

anyway for the effect size. Even if the estimated variance 

covariance matrix of y can be assumed known, the sample 

variance covariance matrix of the variance components 

would still need to be estimated typically by using the 

residual maximum likelihood (REML) method (Rencher and 

Schaalje, 2008). 

In comparison, no simulation is needed for both the 

method of z approximation and residual degree of freedom. 

For the later, the only knowledge needed is the total number 

of observations and rank of X. In practice, those methods can 

become useful when the simulation is considered too time 

consuming. As has been demonstrated, even an 

overestimation of power is predictable, given the uncertainty 

already supplied by the effect size estimations, the 

overestimation may be regarded insignificant.  

In terms of generality, as long as that the model parameters 

are fully defined, there is no restriction of the applicability 

besides those of the linear mixed models. The specification of 

design matrices will need some programming efforts for data 

with a desired pattern of imbalance, but those can usually be 

handled. The rest of operations, such as finding the rank of 

design matrices, and generalized inverses can all be 

automated as well using for example, PROC IML in SAS 

software. The l vector (as appeared in (2)) can be identified 

and checked for estimability. The G and R matrices can take 

any form, whenever they can be fully specified and well-

defined. 

6. Conclusion 

The approximation of the power/ sample size for a linear 

mixed model can be flexible. When a quick estimation is 

needed with rough effect size estimates, the z approximation 

method and the t approximation with residual degree of 

freedom method can be used. The method of simulation with 

an appropriate choice of denominator degree of freedom can 

be used as a general solution. 
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