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Abstract: This paper study the Navier-Stoke-Poisson equations for compressible non-Newtonian fluids in one dimensional
bounded intervals. The motion of the fluid is driven by the compressible viscous isentropic flow under the self-gravitational and
an external force. The local existence and uniqueness of strong solutions was proved based on some compatibility condition. The

main condition is that the initial density vacuum is allowed.
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1. Introduction

In this paper we study a class of one-dimensional isentropic
compressible non-Newtonian fluids of Navier Stokes Poisson
system:

P, +(pu), =0,

(pu), +(pu*), +p® —((u2+u,) * u) +P. =pf, (1)
- _1

¢xx_47g(p ‘Q‘Lpdx)s

With the initial and boundary conditions

{(p, u, ®)(x,0) = (0, 1y, P,), x0[0,1]

u(0,0) =u(l,1)=0, P0)=P(1)=0, ¢0[0,T] @

Where (x,0)0Q,, Q, =1x(0,7),1 =(0,1).
p,u,P,P = apy,a > 0, y > 1 denote the unknown

density, velocity, geopotential and pressure, respectively.

In the sense of physics, the motion of the fluid is driven by
the compressible viscous isentropic flow wunder the
self-gravitational and an external force f°, the initial density

B, 20,4, >0 are given constants.
During the past decades, fluid dynamics has attracted the

attention of many mathematicians and engineers. The study of
non-Newtonian fluid mechanics is of great significant because
of the non-Newtonian fluids are widely used as up to date ones
in various fields of applied sciences, such as the models for the
flow of glacier, the flow of blood through arteries be proposed
in blood rheology, the dynamics of tectonic plates in the
earth’s mantle in geology etc. ([1-3]).

Up to now, the results on non-Newtonian fluids are quite
few. In [4], the local existence and uniqueness results of
non-Newtonian fluids were given in the case of
Py 20,1 < p<2 and by assuming a similar compatibility

condition as (3). [5] studied the global existence and
uniqueness results of heat-conducting fluids if p > 2 and the

initial density in H' norm is small enough. The results on
fluid particle interaction non-Newtonian models, see [6-7].

For the Newtonian fluids without considering the energy
consevation equation term have been studied by many authors
([8-15]). For detail, [9] applied the weak convergence method
showed the existence of global weak solutions under the
assumption that y>3/2if n=2and y29/5if n=3.
Later, this method was improved to reduce more general
results ([10-12]). In [13-15], we can find some local existence
results on strong solutions in three dimensional space
followed the compatibility condition

- phu, + OP(p,) = p,g""* for some g O L*(Q) (3)
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As for the Navier-Stokes-Poisson equations for Newtonian
fluids with density dependent or independent with viscosity,
the existence of strong solutions, regularity and large time
behavior of solutions were investigated, for these results, see
[16-20]. In this paper, we discuss the system (1)-(2) with
£y 20,4,20,p>2, we prove the local existence and

uniqueness of strong solutions under some conditions. As we
know that when p > 2, the second equation of (1) is always

with degeneration. Moreover, the initial density is allowed
with vacuum and the strong nonlinearity of equations bring us
another difficulty.

2. Main Results

2.1. Main Theorem

Theorem 2.1.1 Assume that (0,,u,, f) satisfies the
following conditions

0< p, OH' (yu, DH)D N H* (D), f DL OT5 (D),
f, OL°(0.T;L*(I)), and if there is a function g O L*(I),

such that the initial data satisfy the following compatibility
condition:

[ + 1)1, ) +P(B)=[)"g forac.xOI (4)

Then there exist a time 7, [J(0,+0) and a unique strong
solution (0,u,®P) to (1)-(2) such that
(pOC(0.T.1;H' (1)), p, OC(0.T. |; L (1)),
uOC([0.T.]; Hy (1) N L (0,T.; H* (),
Lu, DL ([0.T.1; Hy (D), pu, DL (0, T.; I (1)),
[} + )" u ], OC(O, T.1; L (1)),
eor” (0.T.; H*(I)),®, OL*(0.T.; H* (I)).

2.2. Preliminaries

First of all, some known facts are given for latter use.
Lemma 2.2.1 Assume that £ = 00ondQ , where QO R'

is bounded and open, f DC**"(E), 0 <a <1.Then

' 1/2 "
1 ey S 4 @1 f g

Where d(Q) denotes the length of Q.

Lemma 2.2.2 Let H be a Hilbert space with a scalar product
(.,.)u and let X be a Banach space such that

X <HLCH <X andXis densein H, p>1. Then

W ={u |:|LP(I;X);%DLP'(I;x*)}qC(I;H)

3. Existence of Solutions

In this section, we will prove the local existence of strong
solutions. To get the existence of strong solutions, some more
regular estimates are required. Provide that (p,u,®) is a

smooth solutions of (1)-(2) and p, > , where0<d <1

is a positive number, as we can deal with approximate
system, we only consider initial nonvacuum. Combining the
classical results of (1); with our correlated uniform estimates,
we can get the existence of strong solutions of our system.
Throughout the paper, we denote by

—_ —

In the following sections, we will use simplified notations
for standard Sobolev spaces and Bochner spaces, such as

L' H',Cl0O,;H'] ete.
® A priori Estimates for Smooth Solutions
We construct an anxiliary function

V(o) = sup(l+| u(s) ., +1 A, * 1V, (5) 1)

Oss<t
Then we will prove that @ (¢) is local bounded (in time).

Next, each terms of W(#) will be estimated as follows:
® Estimate for | 0|,

Firstly, By (1),

(@) +1)">" u,l, = o1, + puu +pP +P.— g (5)
Then

|uo IsClpu, +puu, +p® +P —pgf|
Taking it by L*-norm, Young’s inequality, we get

|uxx |Lzsclﬂlt |L2 +|ﬂlux |L2 +|MX |L2 +|Px |L2 +|”|L2

<A AN ayl; HAudul, HA R HEL H e, ©)

We deal with the term of | ® | ,, Multiplying (1); by &

LZ 9
and integrating over (0, 1), we get

1 1 1
= [, @ Pdx = ~arg([ pddx ~m, [ ®dx)
<87gm, | ®|.<1/2|®, |2, 4327 g’ m;
Consequently,

[ ®laxsc(f pto? scm) )

1
where m, = .[0 P, (x)dx > 0is the initial mass.

Substituting (7) into (6), we get

|, ()]s CP"™ (1) ®)
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Then muntiplying (1), by 0, integrating over (0, 1) with
respect to x, we have

S [ pF ds+ [l (a0, pix =0

Integrating by parts, using Sobolev inequality, we deduct
that

_lp(t)le—lu |L2|p|iz 9)

Then differential (1), with respect to x, and multiplying it
by P, ., integrating over (0, 1) On x, and using Sobolev

inequality, we have

—Ipx de=-| [—u (P.) + pp,u., )(1)dx

3
sSllucl.lp. PRIV

S3|px |22|uxx |L2 (10)

From (9) and (10), by Gronwall’s inequality, it follows that

sup| O(0) |29 0, I} expl |, | ds}

0<t<T

< Cexp(C[ W (s)ds) (1)

And using (1); we can also obtain
1o, .sIp. @] lu@)] . +]p@O)]lu. ()],
< CW (1) (12)

Where C is a positive constant, depending only on M,.

® Estimate for | u |W1,p
0

Multiplying (1), by u,, and integrating over Q ;> we have

0o, P avds 42 S s+ a2 2 dsyas
= [, Pu. (ax = |, Pux(O)dx + [0 ], 100 = puu,
= p® Ju, - Pu ldx (13)

Since

.“oui(t)(s +u,)" ™ ds = j,[((ux)z + 1)) = 1,"" ]

Strong Solutions of Navier-Stokes-Poisson Equations for Compressible Non-Newtonian Fluids

22 (u P-4 a9
and
[ s+ ) s [0 4 s
< fy1e’ (0) +% P s

Substituting (14), (15) into (13), by (1),, Sobolev inequality
and Young’s inequality, we have

[[1pu,(s) Lads+ | u, ()|, C+ [ [ ( o, |
+| puuu, | +| po u, dxds + ||| Pu, i

t pl
+I0 IO (|P.uu, |+ y|Pu u, |)dxds

<C+C,[] \//_of(s)|des +C,[[Ip$)| u )P,

|, P, ds+C,[[1 ol , 1O, ds+[ (1P| 1)),

|1 ()|, Y1 PO)| o 1,(5) ], | 1, (5) ], Ms+C | PO)

1 1
AR CAOTA S PROTARID

Where 0<n<l, to estimate (16), combining with (1), the
following estimates are hold

| PO, +1 PO, S| PO |, +C 1RO 12 +] P01, S CWY(2)

t 0
[j1P@F dx = [ PO dx+ [ ([ (Pe) dvyds
< J'Ol| P(0) ? dx + 2]0’ J'Ol P(=P,u - yPu_)dxds
= [1PO dx+2[ [ ayp’ P(~p.u - pu,)dxds
- o 0 do W px Wx
<C+C[ 1 PO PO) e | £.(5) |1, (5)],, ds
< C(1+ [ W (s)ds) (17)
Combining (16), (17), yields
[[1\ou,(5) ds | u, @) 1, < €A + [ WP (s)ds) (18)

Where C is a positive constant, depending only on M.
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® Estimate for | \/;u,(t) |Lz

Differentiating (1), with respect to t, multiplying it by u,,
integrating it over (0, 1) on x, we derive

zdt'[pl tI dx+_[[((u ) +ﬂ)(p-2)/2u |u.

=[1(F-u, —uu, ~®)p, - pru, - o, + 4, dx
+ 1
[ Pudx (19)
Note that
(@) + )" u ) u,’
= ()} + 1) T (p = 1)) + )y

2 ()" (u )

From (20) and (1);, (19) can be rewritten into

(20)

d 2 1 2
plu I ax+u,
1 1 2
<[ 2plullu, |lu, |dc+[ | p, |lul|u, ||u,|d
1 1 2
1ol ull fllu, |dc+[ plullu, |u,|d
1 1
+ plu l fllu, e+ [ | P |lullu, |de
1 1
[P u N, lac+[1p |ull®, |lu,|de
1 1
+[1plu D, Nu, |de+[ plu, llu,|lu,|de
1 1 12
+[ olul fldc+ [ pI®, llu dx=31, @D
Jj=1
Using Sobolev inequality, Young’s inequality, (8), we get

1/2 5
L,s2|pl;. |u|L.,|ﬁu,|Lz|ux,|Lzscw(t)+—|ux,|ﬁ

2 8
Sl px |L2|ux |LP|ux |LP|uxt |L2SCLIJ (t)+_|u

xt |Lz
< o lplu ) flplugl,< CW* (t)"'— |, [}

3
Sl plel ux ILPI uxt ILZ— CLIJ (t)+_|uxt |L2

4 2
SIpIL""lux |LP|f|L2|u IL”SCLIJ(t)+ |uxt|L2

Sl Px ILzlulL'”luxt ILZ—CqJZ(y+1)(t)+ Iu

xt |L2

SClPx |L2|ux |Lﬂ|u LIJZ(y"-l)(t)+ |u

xt |L2— xt |L2

Cq’4(t)+— |y, [}

18 slpx |L2|ux |L2|¢x |L2|u |

=

S| plplu, P v (t)"'—lu I

L, <| \/;”: |iZ| u
1, pl21 pu, || f, |,,S CW2(0)

ISP 1 pu, ] @, .S CW @D+ D, L,

We deal with the estimate of ®,;.
Differential (1); with respect to t, multiplying it by ®, and
integrating over (0, 1), we have

lezlu |L2_

cw! (t)"‘—l”xt [

|L2_

_le)xx,dJ,dx = 4lgI:p,¢,dx

Then
[lo,Faxsclpl 10, l,sClp P —|¢x, 2
Thus
[lo, FacsClp sClp, I lu,l,s CW @)
Substituting these estimates into (21), we obtain

- | Jou, O +lu, L. CW +C | pu0): (22)
Then integrating (22) over (7,¢) O (0,¢), we deduce that

o O +[ 1u, () Lds s C[ WP +Clpu, @ (23)

We estimate | \/;”t (1) |22 as follows:
Using (1), and according to the smooth of (p, u, @) we have

[ olu, P ax<2f (plullu, P +p|®, [ +p| £ T
P, + )7 u ], + P, e (24)

Then
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timsup [ p| u, Pdx < C 25)
-0 0

Taking limit on t for (23) as 7—0, we get
I pu, ), + L’ |u, P (s)ds < C(1+ jo’ W2 (5)ds) (26)
By virtue of (11),(8),(18) and (26), we deduce that
| u (0)],, + Uy (O] +1 PO+ ou, @)
+ [, () [.ds < C exp(C, [ W¥**(s)ds) (27)

By the definition of Y(¢), we have
"Ww2r+6
W(T) < C exp(C, [ W*(s)ds)  (28)

For the inequality (28), if IT P8 (s)ds <1, then we take
0
T =T,; On the other hand, if IOTWZV *6(s)ds=1, we can
find £, 0(0,T), such that [ Wr*S(s)ds =1.
0

—Q2p+6) -
Choose T, = C, (26 o =2r+6 ¢, , we deduce that

sup W(¢) < C,e* , where C,, C, is positive constant. Then,
0<r<T,

we obtain the following estimate

ess sup (| p(1) |, +14(0) |, )+ 1N PHD) 5 +1 0,

0stsT,

Tl
+ jﬂ lu g (s) [ ds < C (29)

Where C is a positive constant, depending only on M,

4. Proof of the Existence

In this section, we will use the uniform estimates (33) to
prove the existence of the main theorem. Our method that
constructed approximate systems is similar to that in [11], we
take a semidiscrete Galerkin scheme. We take our basic

function space as X = H,(0,1)(1 H*(0,1) and the finite-

dimensional subspaces as
X" = span{¢la¢29"'a¢m} 0 chz([(},l])

Here ¢m is the mth eigenfunction of the strongly elliptic
operator defined on X. Let g, U, satisfy the hypotheses of
Theorem 2.1.1. Asume for the moment that p? [C" ([0,1]) and
pOJ >0 in (0, 1) (for some constant §>0 ). We may

construct an approximate

eOX",¢0C*([0,1])

solution for any

Strong Solutions of Navier-Stokes-Poisson Equations for Compressible Non-Newtonian Fluids

r-‘_ol(pmutm +pmumu;n +pmq)zt _[(u;ﬁ)Z +#0)(p—2)/2
+ u;‘]x +me)¢lx = .[Olpmfdwx

9 el 1

[ orgax+ [ (o"u) gax =0

[iongax =4m[ (" -2 )pax

{ Q]
where £°0C"((0,T)%(0,1)) and

2y

AR A (X AR (X))

The initial and boundary conditions are

m
u,

2 (8") 1, 8" and p"(0)=p) >0
k=1

P’ < p, > +1, |7 = Py o = 0

u"(0,x)=u"(1,x)=0, ®"(0)=d"(1)=0

Under the hypotheses of Theorem 2.1.1, similarly, for any
fixed 0 > 0, we may get the similar estimate

ess sup (| p5 |H1 +|ug WhrOH? )+ Ps Uy et | Pis |L2

0sr<T,

T,
+[ ' ulis (o)} dss € (30)

Combining the course of estimates and the initial condition
of approximate system, we can easily deduce that C is
dependent on T, p,, uy. Moreover, because the constants C are
independent of the lower bound of po. Here C(T) does not
depend on & and m (for any m=M), M is dependent on the
approximate velocity of initial condition). Thus, we can
deduce from the two above estimates that (p™, u™, @®™)
conveges, up to an extraction of subsequences, to some limit
(ps, us, D) in the obvious weak sense, and there are estimates:
6>0, we may get the similar estimate

es5 SUD (05 | + g g Y+ 1N Patis | 1P
<t<T,

g 2
+j0 5% ds < C (31)
Because C(T) is independent of 6, when 6—0, we can
deduct that (ps, us, @;) converges, up to an extraction of
subsequences, to some limit (p, u, @) in weak sense and

ess sup (| 1,1 + 1|10, )* 1V PH, 1 #1015

0<t<T,

T 2
+[Mu, dssC (32)
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From the LP-strong estimates of the equation (1);, we can
easily get the regularity in Theorem 2.1.1.

5. Proof of the Uniqueness

Let (p,u,®) > (p,u,®) be two solutions of the problem
(1)-(2). After substituting into the equation respectively,
choosing test function @=u—u, we obtain

1 - tpl ~
o v
e

rp1 — . B
Sjojo{lp_p”f—ut—uux—¢x||u—u|
+H|P=Pll@=u), [+p|(®=®), [lu=ul
+p|“';|2|;x |}dxds
S-"o{lp_;hzlf_;t_;lx_ax |2 Iu_l_llL.»
+|P—F|L1|(u_;)x |LZ +|p|L‘”|(¢_6)x |L2|u—;|LZ
1P =W us |- s

. _ _
<[{o-pric+ciut +c p-PL,

+ P =) [, +el (=), [, Jds (33)
We denote
p-2
W(s)= (s> + ) 2 s
Since

_Ll((ui )P0 = (e + 1) u ) - ), dx
= .Ll[.[ol W (Bu, +(1-O)u)dO)\(u, — u.) dx

@ (s) = ((s* + )72 s)

=(ss+ 1) 7" (p-Ds* + 1)

2 (p=2)/2 (p-2)/2
2(s"+ 1) 2 H

Consequently (5.1) can be rewritten as

Vo =u)O: +C | lu, ~uxl.ds

P ) ~
<[{p-pr c+ciup +cip-Pp,

+1\ P - u) . s

Similarly, choosing test function ¢ = p—Z), we get

(34

1 — ‘ . .
Efol(p ~p)dx = ‘L Ll(ﬂ' - pu) (p — p)dxds
=-[ [ (p(u=-u)p=p)+ p(u-u).(p-p)

1- —\2
+5"x(,0 — P)")dxds

<[[@lollu=ulal p=pls 4 lue o= P s (35)
Moreover, from (1); we have
P==Pu=-Wu, b __p u_ybu,
Similarly,
(P=P),+(P-P),u+P.(u-u)+y(P-Pu,
+ yI_’(u - ;)x =0

Multiplying it by (P - ;) and integrating over Q ., we get

1 1 2

5 jO(P - P)ldx

_ tpl 1 —, — — —

= —J‘OJ‘O(V—E)(P - P)u +P.(u-u)(P-P)

+ P(u—-u) (P - P)dxds

<[/(Clu || P=P +C|P|, |u=ul.| P=P]|,)s

< [[(C(u, |, +|P, +D)| P=P.)ds+£|(u-u), [ (36)
From (34)-(36), we obtain

o =-uw)®) . +|(p= PO +|(P=P)D[

+C [/ (u = u) () Ly

< [,CO+u s +lus b +1 Pl +lu |e +1Pl})
(VP =u)s) [ +1(p= P)(s) [ +|(P = P)(s) [ )ds (37)

And then, Grownwall’s inequality yields
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u=u P= ,B
From the classical theorems of equation (1.1);, we get
|®-®,..=0
This completes the proof of uniqueness.

6. Conclusion

This paper study the Navier-Stoke-Poisson equations for
compressible non-Newtonian fluids in one dimensional
bounded intervals. The motion of the fluid is driven by the
compressible  viscous isentropic flow under the
self-gravitational and an external force. The local existence
and uniqueness of strong solutions was proved based on some
compatibility condition. Through the research of this paper
can be for further study of the mechanism of this kind of
models and will provide a theoretical basis for further
practical applications.
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