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Abstract: Quantile regression provides a method of estimating quantiles from a conditional distribution density. It is 

achieves this by minimizing asymmetrically weighted sum of absolute errors thus partitioning the conditional distribution into 

quantiles. Lower conditional quantiles are of interest in estimation of Value-at-Risk because they indicate downward 

movement of financial returns. Current risk measurement methods do not effectively estimate the VaR since they make 

assumptions in the distribution tails. Financial data is sampled frequently leading to a heavier tailed distribution compared to a 

normal and student t distribution. A remedy to this is to use a method that does not make assumptions in the tail distribution of 

financial returns. Little research has been done on the usage of quantile regression in the estimation of portfolio risk in the 

Nairobi Securities Exchange. The main aim of this study was to model the portfolio risk as a lower conditional quantile, 

compare the performance of this model to the existing risk measurement methods and to predict the Value-at-Risk. This study 

presents summary of key findings and conclusion drawn from the study. From the fitted conditional quantile GARCH model 

62.4% of VaR can be explained by past standard deviation and absolute residual of NSE 20 share index optimal portfolio 

returns. The fitted model had less proportion of failure of 7.65% compared to commonly used VaR models. 
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1. Introduction 

1.1. Background of the Study 

The establishment of Nairobi Securities Exchange (NSE) 

dates back to 1954 when it was registered under the Societies 

Act as a voluntary association of stock brokers. According to 

Capital Market Authority of Kenya (CMA), NSE is an 

approved institution in Kenya that is charged with the 

responsibility of developing securities markets and regulating 

trading activities. It has an automated trading system that 

provides a platform for trading of financial products. In 2007, 

a Wide Area Network (WAN) was established in the NSE 

enabling stock brokers to carry out trading activities from 

their offices. Like any other automated securities market, 

financial asset prices fluctuate from time to time, which 

forms the basis of gain or loss by investors. Maximizing 

profit and minimizing loss is the main objective of any 

investor/shareholder in a stock market hence risk 

management is essential in trading of financial assets in a 

stock market. 

Capital Market Authority of Kenya in 2010 noted a rising 

trend in equity stock trading at the NSE. This hasprompted 

the development of risk management strategies by financial 

researchers so as to sustain the ever increasing investment 

appetite among investors (Rao and Tata, 2012) [16]. Fischer 

and Jordan (2003) [6] noted that the area of technical risk and 

return analysis need to be given some considerations. 

Financial researches make use past information as a source of 

insights to quantify risk. According to Research Foundation 

of CFA institute (2009), risk management is an act as well as 

a science that quantifies risk through risk measurement and 

also provides a concrete understanding of the nature of risk. 
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According to (Rao and Tata, 2012) [16] Value-at-Risk 

(VaR) is the percentage loss in market value over a given 

time horizon that is exceeding with a given a probability. In 

addition, Value-at-Risk is a conditional quantile of the return 

series and estimation of the VaR is intimately linked to 

quantile regression. The lower tails of the return series 

distribution help in the assessment of the loss associated with 

the downward movement of the share prices. Quantile 

regression as introduced by (Koenker and Basset 1978) [9] 

provides a way of estimating the conditional quantile without 

making distribution assumptions. 

1.2. Statement of the Problem 

Investment involves allocating funds with an expectation 

of earning profits in future. However, states of nature are the 

ones that determine whether there will be gains or losses. 

This is beyond human cognition and the best way to undergo 

this is by managing risk. Loss that is associated with the 

downward movement of asset prices forms the basis of risk 

measurement (VaR). Most existing methods of calculating 

the VaR assume that the tail distribution of the returns follow 

a certain distribution. This is not the case in financial returns 

as data is sampled frequently leading to a heavy tailed 

distribution. In addition, making assumption in the tails of a 

distribution does not provide a way of capturing extreme 

shocks such as those experienced in financial data. Quantile 

Regression as proposed by (Koenker and Basset 1978) [9] 

provides a better way of capturing the outliers in financial 

time series. This is due to the fact that it models the 

relationship of the covariates effect on the conditional 

quantile of the response variable without making assumption 

of the conditional distribution. Additionally, little research 

has been made on quantile regression in the estimation of the 

portfolio Value-at-Risk in the Nairobi Securities Exchange. 

The use of a method that incorporates extreme shocks 

(Quantile Regression) is a better way of estimating the 

minimum value that an investor is willing to loss given a 

certain probability (VaR). 

1.3. Justification of the Study 

The findings of this study are of importance to the 

participants of the NSE. These include the equity stock 

investors, stock brokers, market regulators, policy makers and 

other parties who recognize the significance of quantifying risk 

as a risk management strategy. Investors and financial advisers 

are placed in a better position to measure risk and limit trading 

activities. This consequently helps in minimizing risk and 

maximizes profits by investing in a combination of securities. 

In addition to this, financial activities will increase leading to a 

competitive trading environment which will contribute to the 

economy growth. Through a competitive environment, 

investors and anyone willing to invest in the stock exchange is 

able to access the transparent information on all stocks. 

Financial researchers have an opportunity onidentification of 

researchproblemas well as solutions associated with 

investment in the Securities exchange. 

1.4. Objectives 

1.4.1. General Objective 

This study sort to estimate portfolio risk measures using 

quantile regression of an optimal portfolio of equities chosen 

from listed companies trading at the Nairobi Securities 

Exchange 20 share index for the period of July 2010 - June 

2016. 

1.4.2. Specific Objectives 

a) To determine an optimal portfolio from the listed 

companies in NSE 20 share index. 

b) To estimate the Quantile GARCH based Value-at-Risk 

of an optimal equity portfolio from Nairobi Securities 

Exchange. 

c) To evaluate the back test forecast performance of the 

quantile GARCH based model. 

2. Review of the Previous Studies 

The application of conditional quantile estimation for VaR 

has been extensively applied by most financial researchers. 

There is accumulated evidence among financial practitioners 

that this data exhibits negative skewness and excess positive 

kurtosis as compared to the parametric models assumptions. 

Thus parametric model do not perform well as compared to 

non parametric and semi parametric. Non parametric 

conditional quantile estimations have also been applied but 

they suffer from the inability to accommodate more than two 

covariates (Rao and Tata 2012) [16]. It is due to this reason 

that researcher embarked on coming up with robust methods 

of estimating the Value-at-Risk. A remedy is to use the semi 

parametric methods such as quantile regression as introduced 

by (Koenker and Bassett 1978) [9]. (Kraus and Czado 2015) 

[12] Stresses this by stating the quantile regression has 

gained importance in statistical modeling and financial 

applications.  

Estimation of conditional quantiles and variances in the 

analysis of financial time series is essential in risk 

management as noted by (Chen, 2009) [3]. According to 

(Bassett et al. 2004) [1], conditional quantile distribution 

information forms the basis of estimating Value-at-Risk, 

expected shortfall and limited expected loss which help in 

quantifying risk. VaR is a single value and is easy to interpret 

has been a regulatory concept used in most of the financial 

institution since its introduction in October 2004. 

GARCH models as introduced by (Bollerslev, 1986) [2] 

have successfully been used in modeling of financial data 

since they are able to capture long influence of past shocks. 

Based on this model, (Engle and Manganelli 2004) [5], 

suggested a nonlinear dynamic quantile auto regression on 

the evolution of time varying standard deviation. (Xiao and 

Koenkar 2009) [19] Argue that this model is complicated to 

estimate and existing nonlinear quantile estimation methods 

cannot be directly applicable in his model. (Rossi and 

Harvey, 2009) [17] Applied Kalman filter in the estimation of 

the dynamic quantiles based on CAViaR model. (Xiao and 

Koenkar 2009) [19], suggested a two step approach in the 
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estimation of the conditional quantile based on a GARCH 

model.  

This research project used the two step estimation 

procedure using GARCH model as suggested by (Xiao and 

Koenkar 2009) [19]. (Bollerslev, 1986) [2] GARCH model 

enables one to model conditional variance on past squared 

errors and previous conditional variance. However (Duffie, 

1997) noted that the maximum likelihood estimation of the 

(Bollerslev, 1986) [2] model had a disadvantage of 

overshooting extreme returns. Thus a modified GARCH as 

suggested by (Taylor, 2007) [18] is used in the estimation 

procedure. The first step involves estimation of a sieve 

quantile auto regressive process of the time varying standard 

deviation. Second step involve carrying out quantile 

regression of the past time varying shocks on the estimated 

standard deviation and past absolute innovations. 

(Machuke, 2014) [11] in their study on measurement of 

stock return risk in NSE considered two of the best 

performing stocks. The stocks considered were Bamburi and 

BAT which are from the same industry thus unsystematic risk 

was not taken care of. They further concluded that risk 

metrics did not effectively estimate the Value-at-Risk and 

recommended the usage of semi parametric and non 

parametric methods. This project worked towards 

incorporating the unsystematic risk through creating a 

portfolio and using the quantile regression which is a semi 

parametric method. 

3. Research Methodology 

In this section, we discuss the specification of the quantile 

GARCH based model, estimation procedure using two stage 

method and the goodness of fit of the model. Lastly, the 

model performance measures by use of back test forecast. 

3.1. Specification of the Model 

Portfolio returns are weighted averages of the individual 

individual assets that form a portfolio. 

�� =
∑ �����

	
�
�

�
                                   (1) 

where  ��� are the simple returns of the ���, ��  are the weigths 

of individual assets, �is the number of companies/assets in 

the portfolio and �� is the portfolio return. 

Considering a series of portfolio returns in (1) 

�� = ��� + ��                                 (2) 

Where ��  is the portfolio return series, ���  is the mean 

equation of the series and �� is the innovations/shocks of the 

return series inequation (2). 

Conditional heteroscedasticity models mainly focus on the 

shocks of the process �� . A linear GARCH process as 

suggested by (Taylor, 2007) [18] is considered in this study. 

An advantage of this model is that it is less sensitive to 

extreme shocks. 

�� = �� ∗ ��                                       (3) 

�� = �� + ������ + ��|����|                       (4) 

In equation (3), �� is an independently and identically 

standard normal error. In equation (4),���� and |����| is the 

past time varying standard deviation and absolute residuals of 

the return series. 

3.3. Estimation of Lower Conditional Quantile 

Quantile regression as suggested by (Koenker and Bassett 

1978) [9] provides a robust way of estimating a conditional 

quantile of a probability distribution without making 

distribution assumptions. However, according to (Xiao and 

Koenkar 2009) [16], quantile GARCH based model is highly 

nonlinear due to the dependencies of the latent and the 

unknown parameters. The authors further suggest that an 

estimation method that fully incorporates the global 

dependencies is the best strategy. To circumvent this problem 

a two step estimation procedure was used for the following 

restricted optimization problem in Equation (5). This quantile 

regression problem seeks to emphasize on the global 

dependency. 

T
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The study aimed at computing the Value-at-Risk as a lower 

conditional quantile of the return series.  ��
("|#���) denotes 

the conditional quantile while " being the quantile of interest 

and #��� being the past information up to time % − 1. Under 

weak regularity condition as noted by (Xiao, 2009), the 

conditional quantile estimate is given by 

 ��
("|#���) = ��� +  (�

("|#���)                (6) 

Focusing on the conditional quantile of the shocks of the 

return series in Equation (5) gives 

 (�
("|#���) = )(")*+�                       (7) 

Where )(")* = (��("), ��("), … , �.(")��("), … , �/(") 

is a vector of unknown quantile regression parameters and +� 

contains latent1, ����, … , ���.��, … , ���/ . Thus  

 (�
("|#���) = �� + ��(")���� + ⋯ + �.(")���. + ��|����| + ⋯ + �/|���/|                                      (8) 

3.2. Two Step Estimation Procedure 

The first step involves incorporation of the global 

dependence of the latent and the unknown parameters via 

minimum distance method to construct a global estimate of 

the conditional scale parameter. That is obtained by a sieve 

quantile auto regression of the time varying standard 

deviation  δ2  at a specific quantile of Equation (3). Second 

step involves using results of the first step to estimate local 
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conditional quantile as in Equation (7). Using the estimates 

of the time varying quantile auto regression we use the 

multiplicative standard normal error to get the 

innovations/shocks of the return series. A quantile regression 

of the new series of shocks on past estimated time varying 

standard deviation ����and past absolute innovation/shocks 

|����| both up to time % − 1. 

3.4. Goodness of Fit of the Model 

Rank-Inverse Score is a test that is designed to test the 

goodness of fit of the quantile regression estimates of a 

sparse distributed times series. According to Koenker and 

Machado (1999), Regression rank-score is a process that 

establishes the link between linear rank statistics and 

regression quantiles. Quantile regression is a linear 

programming problem that results to a dual problem which is 

used to formulate the regression quantiles. Koenker and 

Machado (1999) generalized the duality of ranks and quantile 

to linear programming models and suggested a process that 

establishes a link between linear rank statistics and regression 

quantiles commonly known as regression rank score. Rank-

inverse score is thus achieved by integrating the regression 

rank score to an appropriate signed measure on (0, 1). 

Additionally, it helps in testing the significance of the QR 

coefficients. Pseudo 34 is used to measure the goodness of fit 

of a particular quantile rather than a global goodness of fit 

over entire conditional distribution. 

34 = 1 −
56789�:�;ℎ%:==:>��%�8�9�87:?%�7�%:=@6��%�A:

56789:�;ℎ%:==:>��%�8��B86%���@6��%�A:
 

Sum of weighted deviation from the estimated quantile is 

the solution given by the optimization problem (C D , )E) while 

sum of deviation about raw quantile is that value that 

partitions the return distribution into equal portions. 

3.5. Back Test of the VaR Model 

According to (Nieppola, 2009) [14] VaR models are useful 

if they can accurately predict the future risk. To evaluate the 

performance of the VaR model appropriate evaluation 

methods must be used. This means Value-at- Risk model is 

only as good as its back test. Additionally the financial 

researcher states that computation of VaR is adequate after 

reporting back test 

Value-at-Risk is an out of sample concept therefore VaR 

models are evaluated using a systematic procedure that 

compares the actual losses and predicted conditional 

quantiles. (Kupiec, 1995) [13] suggested a proportion of 

failures test that seeks to statistically find out if the frequency 

of exceptions is in line with the confidence interval. Kupiec 

test aims at computing coverage rate (proportion of realized 

quantiles that fall below the predicted quantiles). Coverage 

rates go hand in hand with the dependencies of the predicted 

conditional quantiles. (Christofferssen, 2004)suggested a 

conditional coverage test to evaluate the dependencies. 

3.6. Description of the Data 

In this study, data was obtained from Nairobi Securities 

Exchange data center as the daily closing prices F�  of all 

companies listed for a period of July 2010 to June 2016. This 

period of study was guided by the Kenyan Government 

financial year. The study used a sample of 25 companies 

listed in the NSE 20 share index between January 2000 and 

December 2015. A review of the listed companies is done 

over a period of 15 years and decisions are made on whether 

to include or drop the company from the index. This is the 

main reason as to why the index was used as guidance to the 

sample selection. The other reason as to why the other 

companies were excluded is because of the limited number of 

observations and had inconsistent trading during the study 

period. Simple returns �� were calculated as difference of 

natural logarithm of consecutive closing equity prices of 

listed companies. 

�� = ln(F�) − ln(F���)                          (9) 

Where F�  is the daily closing equity price at time t andF��� 

is the daily opening equity price Equation (8). 

4. Results and Discussion 

An optimal portfolio was selected based on the returns of 

individual listed companies. Portfolio returns were calculated 

forming the basis of estimation of the conditional quantile. 

Package fportfolio in R software (R Core Team 2015) [15] 

was used to select an optimal portfolio. Package Performance 

Analytics was used to compute portfolio returns as well as 

plotting and package Quant Reg was used to find the 

conditional quantile function. 

4.1. Optimal Portfolio Selection 

An optimal portfolio was constructed using the Capital 

Asset Pricing Model (CAPM) where companies with 

negative correlation and co variances were picked. A total of 

seven companies were selected as in table 1. 

Table 1. List of companies making optimal portfolio. 

Symbol NSE Equity Security Industry 

SCOM Safaricom Limited 
Telecommunication & 

technology 

BAT British American Tobacco Limited Manufacturing & Allied 

KUKZ Kakuzi Limited Agriculture 

SASN Sasini Limited Agriculture 

SGL Standard Group Limited Commercial & Services 

JUB Jubille Holdings Limited Insurance 

OCH 
Olympia Capital Holdings 

Limited 
Investment 

It is clear from the selected companies that they are from 

different sectors/industries indicating it is a diversified 

portfolio.This is inline with the finding of Grinblatt and 
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Keloharju (2001) [17] who noted that diversification 

eliminates the unsystematic risks and lowers the total market 

risk which can not be diversified away. 

4.2. Portfolio Returns 

Portfolio returns were split into two that is the in sample 

data (1450) and out of sample data (290). returns. Table 2 

presents a summary statistics of the portfolio returns based 

on training dataset. 

Table 2. Summary statistics of portfolio returns. 

Mean 0.22164948 

Standard Deviation 2.66342653 

Minimum -6.93394951 

Maxmum 6.45650550 

Kurtosis -0.0326 

Skewness 2.492755 

Jarque-Bera 236.65 

Probability 2.2*10-16 

The mean daily returns of the optimal portfolio returns 

were 0.222% and daily standard deviation of 2.66%. The 

portfolio returns displayed a negative skewness of -0.033 and 

excess positive kurtosis of 2.493. Additionally on performing 

a test for normality (Jarque & Bera, 1980) a p-value of2.2 ×

10��M was reported. This value is less than 0.05 level of 

significance leading to the rejection of the null hypothesis 

that the distribution of the returns are normally distributed. 

The conclusion is that the distribution is non normal and 

exhibits fat tails (leptokurtic). This is inline with most of the 

findings of the financial researchers that financial data 

distribution is heavily tailed.It is clear from the test of 

normality that the distribution of the portfolio returns are 

heavily tailed and therefore, a method that does not make 

assumption on the lower tails was used. A quantile GARCH 

based model was used to estimate the lower conditional 

quantile. 

 

Figure 1. Plot of portfolio returns against years. 

4.3. GARCH Model 

The underlying GARCH model for the portfolio returns 

was estimated before developing the Quantile GARCH based 

model. Figure 1 show a plot shows volatility clustering since 

high volatility parts tend to be followed by high volatility 

parts hence presence of ARCH effects in the data. 

Table 3. Test for conditional heteroscedasticity. 

Box-Ljung Test 

Chi-square  Df P-value 

236.65 12 2.2 × 10��M 

Table 3 shows results of Box Ljung test on the residuals of 

the returns series. A p-value of 2.2 × 10��M  was reported 

leading the rejection of the null hypothesis that there are no 

ARCH effects. 

Table 4. GARCH parameter estimates. 

 Estimate Std. Error P-value 

mu 0.16460 0.06544 0.011891 

omega 0.21586 0.06466 0.000843 

alpha 1 0.0733 0.01266 0.00000 

beta 1 0.89598 0.01896 0.00000 
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Table 4 shows that all parameters are significant at 0.05 level of significance hence a GARCH (1,1) model is the best in 

describing the conditional heteroscedasticity. 

4.4. Quantile GARCH Based Model at 0.05 Quantile 

Table 5. Quantile GARCH regression estimates. 

Quantile Latent Coef StdErr. P value 95% conf. Interval 

0.05 

Constant -1.958 0.654 0.02 -2.36, 0.095 

���� 0.059 0.318 0.0001 -1.13,0.062 

|����| 0.009 1.536 0.0000 -1.79,0.0091 

3N(0.05)=0.6236 

Conditional quantile models were estimated that is at 0.05 quantile and the model denoted as QGARCH 1. The parameters 

of the model were as follows. 

�� = 0.16460 +  (�(0.05|#���)                                                                 (10) 

 (�(0.05|#���) = −1.958612 + 0.059096�T��� + 0.00900|�U���|                                   (11) 

4.5. Goodness of Fit 

A measure of how well the 0.05 quantile GARCH based 

model over the entire conditional distribution (Equations (10) 

and (11)), 3N(0.05)  of 0.6236 was reported. This value is 

high indicating that the 62.4% of the dependent variable 

(conditional quantile) can be explained by the independent 

variables (past time varying standard deviation and past 

absolute innovations). 

4.6. Comparison with Other Risk Metrics Model 

Value-at-risk is a conditional quantile and it is an out-of-

sample concept. Out of sample data of 290 portfolio returns 

was used in the model evaluation performance. As a measure 

of performance coverage ratios were used to compare 

models. Coverage ratios were carried out as follows at each 

one step ahead t+1, data up to time t was used to forecast the 

next period conditional quantiles. 

The comparison was done with the Gaussian GARCH VaR 

model and students t test with 4 degrees of freedom VaR 

model. Results for unconditional coverage (Kupiec test) and 

conditional coverage (Christoffersen test) were as follows; 

Table 6. Unconditional coverage rates (Kupiec test). 

 QGARCH Students-t VaR Normal VaR 

Coverage rate 0.0759 0.113 0.0962 

Test statistics 3.6049 4.309 4.486 

P-Value 0.0576 0.5115 0.0341 

Decision 
Correct 

exceendacies 

Correct 

exceendacies 

Incorrect 

exceendacies 

Table 7. Conditional coverage rates (Christoffersen test). 

 QGARCH Students-t VaR Normal VaR 

Coverage rate 0.0759 0.113 0.0962 

Test statistics 3.9748 4.041 5.006 

P-Value 0.137 0.133 0.0294 

Decision 
Correct 

dependencies 

Correct 

dependencies 

Incorrect 

dependencies 

From the table 4 and 5, the QGARCH and students-t VaR 

models had a p-value of more than 0.05 meaning the models 

are able to adjust to unexpected changes in volatility. 

However the quantile GARCH based model performed better 

normal VaR did not perform well as compared to the 

student’s t distribution VaR and the Quantile GARCH based 

model. This is simply because the latter models take into 

account the fat tailed behavior of the log returns. On 

comparing the quantile GARCH based model and students t 

VaR, the fitted model perform better because it had lower 

proportion of failure of 7.65% compared to 11.3% of student 

t VaR model. 

5. Conclusion and Recommendations 

5.1. Conclusion 

This chapter presents summary of key findings and 

conclusion drawn from the study. From the fitted conditional 

quantile GARCH model 62.4% of VaR can be explained by 

past standard deviation and absolute residual of NSE 20 

share index optimal portfolio returns. The fitted model had 

less proportion of failure of 7.65% compared to commonly 

used VaR models. 

5.2. Recommendations 

The semi parametric approaches such as quantile regression 

are recommended for assessing the lower tails of a financial 

return distribution. Generalized Autoregressive Conditional 

Heteroscadasticity is useful for modeling non constant 

variance/standard deviation of optimal portfolio returns. 

5.3. Further Research 

Other GARCH models can be considered for the 

portfolioreturns such as Exponential GARCH, Threshold 

GARCH and CHARMA model.  
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