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Abstract: This paper is collecting the classic and newly normalization methods, finding deficiency of existing normalization 

methods for interval weights, and introducing a new normalization methods for interval weights. When we normalize the 

interval weights, it is very important and necessary to check whether, after normalizing, the location of interval centers as well 

as the length of interval weights keep the same proportion as those of original interval weights. It is found that, in some newly 

normalization methods, they violate these goodness criteria. In current work, for interval weights, we propose a new 

normalization method that reserves both proportions of the distances from interval centers to the origin and of interval lengths, 

and also eliminates the redundancy from the original given interval weights. This new method can be widely applied in 

information fusion and decision making in environments with uncertainty.  
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1. Introduction 

Multiple criteria decision analysis (MCDA) widespread in 

economics, management, engineering and military fields. 

MCDA is an important part of modern scientific decision-

making and its theory and method have been widely used in 

engineering, economics, management and military as well as 

many other fields. The MCDA reasonably determined by the 

normalization of interval weight is very important because it 

is related to the reliability and accuracy of decision outcomes 

[2]. Therefore, the study of MCDA determined by the index 

weight has important theoretical and practical value. In the 

decision-making process, due to the complexity of the 

objective things, uncertainty and ambiguity of the human 

mind, to deal with a large number of uncertain data, the study 

under Multiple Attribute Decision Making with Uncertainty 

has important theoretical and practical significance. In the 

multi-attribute decision-making process to determine the 

attributes’ weight is important research content [5]. Because 

of the uncertainty of attributes’ weight, policymakers often 

use interval numbers or natural language to express the 

information on attributes’ weight. As an aggregation tool in 

environment with uncertainty, the weighted average with 

interval weights is often used. Generally, to convert a 

weighted sum to be a weighted average, the given weights 

should be normalized. In literature, some normalization 

methods for interval weights have been proposed. However, 

there is not suitable criterion to judge the goodness of these 

normalization methods. Thus, proper normalized interval 

weights are useful and necessary in the field of science. The 

existing normalization methods are created by basic interval 

arithmetic. However, there is no criterion, which can be used 

to judge the goodness of these normalization methods, 

proposed in literature. Establishing a reasonable criterion and 

using it to judge normalization methods of interval weights is 

necessary. In this paper, checking an article written by Wang 

and Elhag [4], we discuss the goal and error of existing 

normalization methods. Furthermore, a criterion of reserving 

the proportion of interval weights unchanged is established. 

Then, we introducing a new good normalization method, 

which provides infinitely many reasonable normalized 

weights including two extreme weights: one with minimum 

uncertainty and another with maximum uncertainty.  

After Introduction, this paper is organized as follows. In 

Section 2, we briefly recall some background and 

fundamental knowledge for interval weights. Then, the 

advantage to normalize the interval weights is discussed in 

Section 3. Also, we review some existing normalization for 
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interval weights given in [4]. In Section 4, we point out the 

deficiency of existing normalization methods for interval 

weights. Through Section 5, a new methods to normalize 

interval weights is presented with a number of example. This 

paper is concluded with few comments in Section 6. 

2. Preliminaries 

In this section, let us review some basic interval arithmetic 

law which would help and improve the further discussion. 

Let � =  [��, ��]  and 	 = [	�, 	�]  be two non-negative 

intervals. By the extension principle, the following binary 

operations on the set of all non-negative intervals can be 

defined: 

Addition: � +  	 =  [��  +  	�, ��  +  	�]; 
Subtraction: 

 � –  	 =  [�� − 	�, �� − 	�] if �� − 	� ≥ 0; 
Multiplication: � × 	 = [��	�, ��	�]; 
Division: � ÷ 	 = ���

�� , ��
��� if 	� ≠ 0. 

Also, we suppose that �� = [�� �, ���]  for � = 1, 2, … , " 

are given interval weights and �#� = $ �#��, �#��%  for � =1, 2, … , ", is called their normalized interval weights, where 

�#�� = &'�
∑ &'�)*+,  , � = 1,2, … , ",                 (1) 

�#�� = &'�
∑ &'�)*+,  , � = 1,2, …,                    (2) 

Once numerical information { -�|� = 1, 2, … , "}  for n 

attributes is available, based on interval arithmetic, ∑ ��-�0�12  

is the weighted sum. As a special case, if {��|� = 1, 2, … , "} 

is normalized, the weighted sum is called the weighted 

average (or, weighted mean).  

In addition, Jimenez et al [3] suggested another 

normalization approach for interval weights, as follows:  

4� = &'��&'�∑ ()*+, &'��&' �)  , � = 1, 2, … , ",             (3) 

4�� = 7'&'�
 8'��8' �9

, � = 1, 2, … , ",                  (4) 

4�� = 7'&'�
 8'��8' �9

, � = 1, 2, … , ".                (5) 

where 4�� and 4�� form normalized weight interval [4��, 4��], � = 1, 2, … , "). 
We can easily know the midpoints of interval weights 

through (3) to (5) as 

4� = (&'��&'�)∑ ()*+, &'��&' �)  , � = 1, 2, … , ",               (6) 

4�� = &'�∑ ()*+, &'��&' �)/;  , � = 1, 2, … , ",            (7) 

4�� = &'�∑ ()*+, &'��&' �)/;  , � = 1, 2, … , ".            (8) 

3. Newly Introduced Normalization 

Methods for Interval Weights 

Normalization can be divided into two categories: one is 

mapping the weights’ value into interval (0,1); another is 

transforming into dimensionless facilitate calculation and 

application. The latter uses some statistical probability 

distribution. According to the discussion in [4], interval 

weights �� = [�� �, �� �] for � = 1, 2, … , " are normalized iff 

all �� �  and ���, � = 1, 2, … , ", are attainable. Here the 

meaning of “attainable” is that �� � (or �� �) can serve as ��  
in  

< = {(�2 , �;, ⋯ , �0)|�� � ≤ ��≤ ���, �＝1, 2, … , " , ? ��0
�12 = 1}. 

The purpose of such a definition is to remove redundancies. 

So, the authors of [4] want to use the maximum and 

minimum of interval weights vector as: 

∑ ���0�12 + max(�� � − �� �) ≤ 1,            (9) 

∑ ���0�12 + max(�� � − �� �) ≥ 1.          (10) 

Moreover, the authors of [4] present normalization method 

for interval weights with the violation of condition. Let �#� = $ �#��, �#��% for � = 1, 2, … , ". 
∑ �#��0�12 + maxC�#�� − �#��D ≤ 1,          (11) 

∑ �#��0�12 + maxC�#�� − �#��D ≥ 1.         (12) 

If �#� = $�#��, �#��%  for � = 1, 2, … , "  are the interval 

weights determined by  

�#�� = &'�
&'��∑ &'�)*E' , � = 1, 2, … , ",           (13) 

�#�� = &'�
&'��∑ &'�)*E' , � = 1, 2, … , ",           (14) 

then 

�� � = max {���, 1 − ∑ �F�} ,FG� � = 1, 2, … , ",      (15) 

�� � = min {�� �, 1 − ∑ �F�} ,FG� � = 1, 2, … , ".      (16) 

Also, if an interval weight vector I = (J2, … … , J0) with J� = [J��, J� �]  and J� � ≤ J� � for � = 1, 2, … , " satisfies 

(15) and (16), let �#� = $�#��, �#��% for � = 1, 2, … , ", are the 

interval weights determined by  

�#�� = max {���, 1 − ∑ �F�} ,FG� � = 1, 2, … , ",      (17) 

�#�� = min {�� �, 1 − ∑ �F�} ,FG� � = 1, 2, … , ".      (18) 

Let �#�2 = [�#�2�, �#�2�
] for � = 1, 2, … , ",  be the 

normalized interval weights determined by (17) and (18) and �#�; = [�#�;�, �#�;�
] be the normalized interval weights 

determined by (17) and (18) . Then  �#�2� ≤  �#�;�
and 
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�#�2� ≥ �#�;� for � = 1, 2, … , ". 
4. Deficiency of Existing Normalization 

Methods for Interval Weights 

Purpose in the article written by Wang and Elhag [4] is 

unclear. For normalizing interval weights, an additional 

criteria in necessary is to make the purpose clear reachable.  

In paper [1] written by De-Qing Li et al, they cite a 

counterexample to the Lemma in paper [4]. In this Lemma, �#� = $�#��, �#��%  for � = 1, 2, … , "  are normalized interval 

weights determined by 

�#�� = max {���, 1 − ? �F�} ,
FG�

� = 1, 2, … , ", 
�#�� = min {�� �, 1 − ? �F �} ,

FG�
� = 1, 2, … , ". 

Then they conclude that there is only one interval �#7 =$�#7�, �#7�%  , 4 ∈ {1, 2, … , "},  which is different from the 

original interval �#7 = $�#7�, �#7�%, while the others remain 

unchanged. Paper [1] gives a counterexample to disprove this 

conclusion. In the counterexample, three intervals [0.4, 0.6], 

[0.3, 0.6], and [0.2, 0.8] are used as the given weights. Then, 

according to the method shown in [4], the obtained 

normalized weights are �#2 = [0.4, 0.5], �#; = [0.3, 0.4] and �#P = [0.2, 0.3] . In this 

example, all three intervals are changed. In our point of view, 

it also shows that this method cannot keep the proportion of 

the interval lengths unchanged, which is important in practice 

and we define it as a goodness criterion of normalization 

methods for interval weights in the next section, though the 

obtained new weights are reachable. 

However, we can use a much simpler counterexample to 

negate the Lemma in [4] as follows.  

Example 1. Consider only two attributes with interval 

weights �2 =  [0, 2] and �; =  [0, 2]. According to the 

method of normalization shown in [4], the normalized 

weights should be �#2 = �#; = [0, 1].  The original intervals 

are both changed. This negates the conclusion given in the 

Lemma of paper [4]. 

5. Criterion of Goodness and a New 

Normalization Method for Interval 

Weights  

When we normalize the interval weights, it is very 

important and necessary to check whether the length of 

normalized interval weights keeps the same proportion with 

original intervals. It is found that, in papers [1] and [4], their 

methods violate such a goodness criterion. However, we can 

propose a new normalization method for interval weights that 

reserves the proportion of interval lengths and eliminate the 

redundancy for the original given intervals. 

5.1. Definition and Judgment of Normalization 

Let �� = [���, ���], � = 1, 2, … , ", be interval weights with 0 ≤ ��� ≤ ���.  
We assume  

< = QJ = (J2, J;, … , J0)R ��� ≤ J� ≤ ���, � = 1, 2,
… , "; ? J�0

�12 = 1 S 

to be the set of all normalized weight vectors. The following 

definition of normalization for interval weights can now be 

given. 

Definition. [4] An interval weight vector I =(�2, �;, … , �0)  with �� = [���, ���]  and 0 ≤ ��� ≤ ��� for � = 1, 2, … , " , is said to be normalized if and only if it 

satisfies the following conditions: 

(1) N is nonempty; 

(2) ��� and ���, � = 1, 2, … , ", are all attainable in <, that is, 

each of them can serve as an entry in some weight vector 

in N. 

5.2. Criterion of Goodness for Normalizing Interval 

Weights 

Let �� = [���, �� �] for � = 1, 2, … , " be the given interval 

weights and �#� = $�#��, �#��%  for � = 1, 2, … , "  be its 

normalization. The latter should has the same proportion of 

interval lengths as the former, that is, �#�� − �#�� =4(�� �−�� �) for all � = 1, 2, … , ", where k is a nonnegative 

number. 

Based on this goodness criterion, a new method of 

normalization for interval weights can now be introduced. 

Three steps of new method to normalize interval weights: 

(1) Finding the midpoint of each interval weight �� , 

denoted by T�, that is,  

T� = &'��&'�
; , � = 1, 2, … , "; 

(2) Regarding T� , � = 1, 2, … , ",  as real-valued weights, 

using classical method to normalize them, and denoting 

the obtained normalized real-valued weights by J� , � = 1, 2, … , "; 

(3) According to the proportion of the length of original 

interval weights, extending them to be intervals as 

large as possible but not violating the attainability 

described in [4].  

The third step can be realized by solving an LP 

maximization problem with respect to parameter U ≥ 0  as 

follows. Let V� = �� �−�� �, � = 1, 2, … , ".  

max t 

s.t. J�� + UV� + ∑ (J�F − UVF) ≤ 1,FG�  � = 1, 2, … , "; 
J�� − UV� + ∑ (J�F + UVF) ≥ 1,FG�  � = 1, 2, … , "; 

J�� + UV� ≤ 1, � = 1, 2, … , "; 

J� − UV� ≥ 0, � = 1, 2, … , "; 
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U ≥ 0. 

Denote the solution of above LP problem by UW. Taking U ∈ [0, UW], any interval weights $J�� − UV� , J� + UV�%, � = 1, 2, … , "  is a normalization of given interval weights �� = [�� �, �� �]  for � = 1, 2, … , " . When UW = 0 , the 

normalization of interval weights �� = [���, �� �]  for � = 1, 2, … , " is unique. While UW > 0 , there are infinitely 

many normalizations for the original interval weights. All of 

these normalizations satisfy the requirement in above-

mentioned goodness criterion. Weights  J� � , � = 1, 2, … , " , 

called the minimum normalization of the given interval 

weights, has the smallest uncertainty, that is, it is just the 

classical weights. Weights $J�� − UWV� , J� � + UWV�%, � =1, 2, … , " , called the maximum normalization of the given 

interval weights, has the largest uncertainty. Users can select 

any one from them according to the real situation of the 

application. 

5.3. Example to Testify the New Method 

Example 2. We still used the interval weights given in 

Example 1. By the new method, from interval weights [0,2] 

and [0,2] with V2 = V; = 2 , we can get the minimum 

normalization 0.5 and 0.5. The maximum normalization is [0, 

1] and [0, 1] with U = UW = 1. It is easy to see that they are 

both attainable and reserve the proportion of the interval 

lengths. In the following examples, using an n-tupe to 

express a weights is convenient. 

Example 3. Given interval weights ([0, 2], [2, 5], [5, 9]). 

The midpoints are 1, 3.5, 5 respectively. The normalized 

interval weights should have expression ( ;;P ± U, Z;P ± U, 2[;P ±U) . Considering the restriction in the LP problem, the 

minimum normalization is ( ;;P , Z;P , 2[;P), while the maximum 

normalization is (�0, [;P� , � [;P , 2\;P� , �2\;P , 2];P�) with U = UW = 2;P. 

Example 4. Consider given interval weights ([0,1], [1, 2], 

[2, 3],[3, 4]). According to above new method, we can find 

the midpoints being 0.5, 1.5, 2.5, 3.5. Any normalized 

weights can be expressed as (
22^ ± U, P2^ ± U, _2^ ± U, Z2^ ± U) . 

Finally, through solving the LP problem, the maximum 

normalization is interval weights `�0, 2]� , �2] , 2[� , �2[ , P]� , �P] , 2;�a. 
It is notable that not any interval weights has infinitely many 

normalizations.  

Example 5. Regarding any real number a as an interval [a, 

a], we take interval weights (0.3, [0.1, 0.3]) with midpoints 

0.3, and 0.2. Since the length of interval [0.3, 0.3] is 0, the 

normalized interval weights should have an expression 

( 0.6, 0.4 ± U) . In this case, UW = 0 , that is, the unique 

normalization is classical weights (0.6, 0.4). 

It is evident that this new method can also reserve the 

proportion of the distances from the centers of intervals to the 

origin. This is an intuitive goodness of the new method 

discussed in this section and should be regarded as a basic 

requirement for normalization of interval weights, ever for 

classical weights. 

6. Conclusion 

The normalization of interval weights is important and 

necessary in multiple criteria decision analysis (MCDA) 

problems. There already exist some normalization methods 

for interval weights. However, no criterion has been used to 

judge their goodness. In this work, we introduce a goodness 

criterion that is intuitive and practicable. Under this criterion, 

we can see that those existing normalization methods are not 

good. Then, we introduce a new method for normalizing 

interval weight. This new method is good enough in practice 

since it reserves the proportions for both locations of interval 

centers and lengths of intervals from the original interval 

weights, and it can delete all redundancy.  
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