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Abstract: Extreme value theory is the study of extremal properties of random processes, it models and measures events that 
occur with little probability. The extreme value theory is a robust framework to analyze the tail behavior of distributions. It has 
been applied extensively in hydrology, climatology, insurance and finance industry. The information of probability of customer 
default is very useful while analyzing the credit risks in banks. Logistic regression model has been used extensively to model 
the probability of loan defaults. However, it has some limitations when it comes to modeling rare events, for example, the 
underestimation of the default probability which could be very risky for the bank. The second limitation/drawback is that the 
logit link is symmetric about 0.5, this means that the response curve п(xi) approaches one at the same rate it approaches zero. 
To overcome these limitations the study sought to implement regression method for binary data based on extreme value theory. 
The objective of the study was to model loan defaults in Kenya banks using the GEV regression model. The results of GEV 
were compared with the results of the logistic regression model. The study found out for rare events such as loan defaults the 
GEV performed better than the logistic regression model. As the percentage of defaulters in a sample became smaller the GEV 
model to identify defaults improves whereas the logistic regression model becomes poorer. 
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1. Introduction and Literature Review 

1.1. Background of Study 

The likelihood that a bank loan will default is of interest to 
both regulators and investors. Under the Basel regulatory 
guidelines, a bank must hold capital in proportion to the 
riskless of its assets. The probability of default is the primary 
determinant of riskless on loan. Investor, in turn, prices a 
loan in the secondary market based on its normal cash flow, 
which again depends on the default probability. 

Credit risk forecasting is one of the most studied topics in 
modern finance, as the bank regulation has made increasing 
use of external and internal credit rating (Basel Committee of 
banking supervision [18]) 

The Basel capital accord encourages financial institutions 
to develop and promote financial management systems. As a 
result, banks are interested in obtaining a more objective 
rating of loan portfolios. 

High levels of indebtedness imply a greater incident of 
default and increasing the risk of lenders. 

Since unsecured personal loans policies change rapidly, 
stringent measures and developing an efficient portfolio 
management strategy are important objectives of the banks. 
Banks consequently devote many resources to developing 
internal risk models. Once accurate credit risk models have 
been developed banks will be able to identify loans that have 
a lower probability of default. 

In finance, the default is a failure to meet the legal 
obligation (or conditions) of a loan.eg when a home buyer 
fails to make a mortgage payment. 

Most significant events in several areas are rare events. 
These include economics, finance, medicine, and 
epidemiology. In economics and finance, some critical areas 
of applications of extreme value theory and the rare event 
methodology are credit risk, value at risk and finance strategy 
of risk management (Embrechts et al [31]) 

Extreme Value Theory (E.V.T) is the theory of modeling 



290 Stephen Muthii Wanjohi et al.:  Modeling Loan Defaults in Kenya Banks as a Rare Event Using the 
Generalized Extreme Value Regression Model 

and measuring events that occur with little probability. 
In EVT theory, there are two main approaches with their 

strengths and weaknesses. The first one is based on modeling 
the maximum of a sample called the upper order statistics 
over a period. 

The second relies on modeling excess values of a sample 
over a threshold within a period 

The three families of the extreme value distributions can 
be nested into a single parameter representation as shown by 
Jenkison [22] and Von Mises [36]. 

This representation is known as the Generalized Extreme 
Value (GEV) distribution. 

1.2. Models Previously Used to Model the Likelihood of 

Default 

Altman [5] used the Z-score formula for predicting 
bankruptcy. The formula was used to predict the probability 
that a firm will go into bankruptcy within two years. The Z-
score was also used to predict corperate defaults. The Z-score 
uses multiple corporate income and balance sheet values to 
measure the financial health of a company. The z-score is a 
Linear combination of five common business ratios; which 
are weighted by coefficients. He applied the statistical 
method of discriminant analysis to a data set of publicly held 
manufacturers 

Lenntand Golet [26] in his paper (article) he focused on 
the symmetric binary choice models also known as 
conditional probability models. He sought to know whether 
asymmetric binary choice models, based on extreme value 
theory, can explain bankruptcy better. 

Anatoly et al [3]. In the study of the probability of default 
models of Russian banks, they used binary choice models to 
estimate the probability of default. They also found out that 
preliminary expert clustering or automatic clustering 
improves the predictive power of the models. 

Mday Rajan et al. [35] In their work they focused on the 
statistical default models and incentives. They argued that a 
purely statistical model ignore the idea that a change in the 
incentives of agents who generate the data may change the 
very nature of data, their work tried to critique on statistical 
models that naively collaborate on historical data without 
modeling the agent behavior that produces these data. 

Andrea Puth Coravos, [1] He focused on measuring the 
livelihood of small business loan default. Using small 
business loan portfolio data, he identified the specific 
borrower, lender and loan characteristics and changes in 
economic conditions that increase the likelihood of default. 
His results laid the foundation for an in-house, and it is 
scoring model. 

Peter Croshie, [27] He focused his work on modeling 
default risk that it is the uncertainty surrounding a firm‘s 
ability to service its debts and obligations. 

Alexander [6] His study focused on the Russian banking 
sector regarding determiners of bank defaults. He used 
parametric probit and logistic models to analyze the 
significance of different financial ratios obtained from the 
publicly available balance sheet. 

Wesgaards and wijst [33] their work focused on the use of 
logit model to predict the probability of default, they used 
their model for analyzes of defaults affecting the Norwegian 
limited liability companies. 

Kolari, Glennon et. al. [35] They used a sample of 100 
large banks and employed both logit model and non-
parametric trait negotiations. They divided their data into an 
in-sample and out sample to test their ability to predict 
failure. They found out that trait recognition had superior 
predictive accuracy, but they concluded that both models had 
at least 90% accuracy when predicting failure. 

Adam et al. [28] used the logistic model to predict the 
likelihood of bank loan defaults in Kenya. In their study, they 
used a data set that contained demographic information about 
the borrowers. They sought to identify which risk factors 
associated with borrowers contribute toward default. The risk 
factors were, gender, age, marital status, occupation and term 
of the loan duration 

Omkar Backward [28] he used three popular data mining 
algorithms, artificial neural network decision tree and naïve 
Bayesian classifiers along with the most commonly used 
statistical method (logical regression) to develop the 
prediction models using a large data set. Their results 
indicated that naïve Bayesian classifier was the best with 
predictor accuracy of 92.4%. 

Rafaella [31]. They focused on modeling the loan defaults 
of SME as rare events using the generalized extreme values 
regression. In their study, they found out that the logistic 
models had some drawbacks e.g. the underestimation of the 
probability of defaults. They used the binary GEV model to 
predict the likelihood of loan default which was found to 
perform better than the logistic regression model. They 
applied their model small and medium italian enterprises. 

Rafaella et al. [32] In their work on Bankruptcy prediction 
of small and medium Enterprises using a flexible Binary 
GEV model, they used a binary regression accounting based 
model for bankruptcy prediction of small and medium 
enterprises. They found out that the advantage of the model 
was its accuracy in identifying the defaulted SMe`s. 

Junjie liang [23] He described an approach of performing 
credict score prediction using random forests. His model was 
able to make good predoctions of a loan becoming deliquent. 
His model perfomed relatively well giving an AUCof 0.8672. 

Haotian Chen et al [21] In their work they investigated a 
variety of data mining techniques both theoritically and 
practically to predict the loan default late. They examined the 
logistic regression, decision tree, generalised regression 
neural network and gradient boosted tree. 

1.3. Statement of the Problem 

Loan default is a rare event within a bank, but once the 
event occurs it may lead to the incurrence of loss. These 
extreme events affect the day to day operation of the banks 
and hence the economy of the country. 

This problem has attracted much attention to statisticians, 
and a variety of models have been proposed and 
implemented. Some of these models include the Z-score, 
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standard discriminant model, and Logistic model. However, 
there is limited literature on the performance of GEV models 
as a method for modeling and predicting the probability of 
default for rare events. 

There is a need to investigate the performance of GEV 
model for rare events such as the loan defaults. 

1.4. Justification of the Study 

The challenge of using the logistic regression models in 
modeling extreme events is that it underestimates the 
probability of rare events, and the logit link function is 
symmetric about 0.5. Thus, the use of a GEV regression 
model tries to address the mentioned problem. 

The study will be of interest to financial institutions who 
wish to make sound decisions when awarding loans to the 
applicants. 

Commercial Banks play a significant role in the economy 
system of many countries and particularly Kenya. It is of this 
importance that the financial institutions understand the use 
EVT in modeling rare events 

This study is also geared to enlighten the banking sector of 
the risk default when issuing loans to applicants. 

1.5. Objectives 

1.5.1. General Objective 

The main aim is to model loan defaults in Kenya banks 

1.5.2. Specific Objective 

To estimate the probability of loan default 
To model loan default using the GEV regression model 
To compare the logistic regression model to GEV 

regression model using confusion matrix 

2. Methodology 

In this study, we are going to use both the logistic 
regression model and the GEV regression model to fit the 
data and compare the results. 

2.1. The Logistic Model 

The logistic model is often used to model categorical 
variables that take only two possible outcomes representing 
failure or success. 

The logistic regression model has the form 

Logit (π�) = log (
������)                      (1) 

Taking the antilog of the equation (1), one derives an 
equation that can be used in the possibility of the occurrence 

of an event as follows 

π�= �	
	(
��
����⋯.
���)���	
(
��
����⋯.
���)                          (2) 

Where π is the probability of the outcome of interest or the 
event. The model will be used to predict the likelihood of 
default. 

2.2. Parameter Estimation 

The regression coefficients are estimated by the method of 
maximum likelihood method. 

2.3. Maximum Likelihood Method for Logistic Regression 

Since each �� 	 represents a binominal count in the ith 
population the joint probability function of � is 

�(� �� ) = ∏ �
��(����)

���� π���(1 − π�)����            (3) 

The ML estimation is the values of � that maximizes the 
likelihood function of equation (3) After rearranging the 
terms the equation to be maximized can be written as 

∏ ( ������)������ 1 − π� 	                        (4) 

The logistic regression model equates the logit transform 
to the log odds of the probability of success. 

!"# $ ������% = 	∑ '(��(((�)                      (5) 

Exponentiating both sides we get 

$ ������% = *+, ∑ '(��(((�)                     (6) 

Solving for -� 	 we get 

π� = [ /∑ ��0
00012 3
��456	(∑ ��0
0)0012 ]                     (7) 

Substituting equation 2.5 and 2.7 for the second term, 
equation 2.4 becomes 

∏ (exp	(∑ '�;�())((�) ������ (1- 
456	(∑ ��0
0)0012��456	(∑ ��0
0)0012 )    (8) 

Simplifying the first product equation 2.8 becomes 

∏ (exp	(�� ∑ '�;�()((�)���� (1 + exp	(∑ '�(�()((�) )��  (9) 

This is the kernel of the likelihood function to maximize. 
This can be simplified by taking logs so as to differentiate 

!(�) = (∑ ��(∑ '�;�()((�) '�;�()(��� − =� log( 1 + exp	(∑ '�(�()((�) )                               (10) 

To obtain the critical points of the log likelihood function, 
set the first derivate on each � equal to zero. Differentiating 
equation (10) we get 

A
A
B∑ '�;�; = '�;;;�)                     (11) 

Since the other term in the summation does not depend on �;  they can be treated as constants. Differentiating the 
second half of equation 2.10 we get. 
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The maximum likelihood estimates for � can be found by 
setting each of the K+1 equations in equation (12) to zero 
and solving for each �( . Setting the equation (12) equal to 
zero results in a system of K+1 nonlinear equations each with 
K+1 unknown variables. To solve this system of nonlinear 
equations we can either use Newton- Raphson method of 
Fishers scoring method. 

2.4. Extreme Value Theory 

Extreme value theory is a robust framework to analyze the 
tail behavior of distributions Embrechts et al [31] 

The class of GEV regression distributions they are flexible 
with the tail-shape parameter controlling the shape and size 
of the tails of the three different families of distributions 
nested under it. 

The three families can be nested into a single parametric 
representation as shown by Jenkinson [22] 

2.4.1. Generalized Extreme Value Distribution 

Generalized extreme value distribution (GEV) is a family 
of continuous probability distribution developed within 
extreme value theory to combine the Gumbel, Frechet and 
Weibull also known as type I, II and III extreme value 
distributions. 

The generalized extreme value distribution has cumulative 
distribution function given by 

�(+: F, H, ᶓ) = *+,{− K1 + ᶓ $	�LM %
N�ᶓ O}           (13) 

For 
��ᶓ(	�L)

M ˃0 

where µϵℝ is the location parameter, σ˃0 the scale parameter 
and ᶓTℝ	the shape parameter that governs the tail behavior of 
the limiting distribution. 

The probability density function is given by 

�(+: F, H, ᶓ) = �
M [1 + ᶓ[$	�	LM %

N�ᶓN�]*+,{− K1 + −ᶓ($	�	LM %�
�ᶓO} (14) 

Again 
��ᶓ(	�L)

M ˃0 

The GEV distribution encompasses the three types of 
limiting distribution Gnedenko (1943) 

Type 1: ᶓ → 0	the Gumbel family 

The cdf is 

�(+) = exp[− *+,(−+)] 	− ∞ < + < ∞        (15) 

Type II:	ᶓ˃0 the Frechet family. 
The cdf is given by 

�(+) = Xexp	[−(1 + Y+)
N�Z ], + > ��

\0, 	"]ℎ*_`ab*        (16) 

Type III:	ᶓ < 0 the Weibull family 
The CDF is given by 

�(+) = Xexp	[−(1 + Y+)
N�Z ], 	+ < ��

\1, 	"]ℎ*_`ab*          (17) 

However, the parameter µ is not the mean but does 
represent the Centre of the distribution, and the scale 
parameter H is not the standard deviation but does govern the 
size of the deviations about µ. 

To estimate the PD 

-(+�) = ,{�� = 1/+�},                    (18) 

The response curve for the GEV is given by 

-(+�) = exp	{−[1 + Y(�d+�)]N�Z }           (19) 

The link function of the GEV model is given by 

{� ef[g(	�)]}NZ��\ = �d+�                     (20) 

That represents a non-canonical link function 
For the interpretation of the parameters h, i we suppose 

that the value of the jkl  regressor (with j=1………k) is 
increased by one unit and, all other variables remain 
unchanged. 

2.4.2. Parameter Estimation of the GEV 

The GEV model contains three parameters 	h, i, m. These 
parameters can be estimated using either parametric or non-
parametric methods. 

In parametric methods, we are going to discuss the 
maximum likelihood method 
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2.4.3. Maximum Likelihood Estimation of a GEV Model 

Let � = (��, �n……… . . ��) be a simple random sample of 
size n from � the log-likelihood function is given by 

!(�, Y) = ∑ p−��[1 + Y(�d)]N�Z + (1 − ��)ln	[1 − exp r[1 + Y(�d+�)]N�Z s]t����                           (21) 

For {+� : (1 + Y�d+�) > 0} 
The score functions are given by are obtained by 

differentiating the log likelihood function on the known 
parameters ξ and	�. 

Au(
,\)
A
v = −∑ +�w ef[g(	�)]���g(	�)(��\
x	�)(��g(	�))

����                  (22) 

For j = (0,1, ………… . y) 
Au(
,\)
A\ = ∑ [ �\z ln	(1 + Y(�d+�) − 
x	�\(��\
x	�)] ���g(	�)��g(	�) ln	[-(+�)]����    (23) 

The MLE of the parameters ξ, � are dependent and they 
cannot be computed separately. The score functions do not 

have closed form, the MLE need to be obtained by 
numerically maximizing the log-likelihood function using 
iterative optimization algorithms. 

Case 1: Y → 0 
For initial estimate for ξ a value close to zero, our GEV 

model becomes the Gumbel regression model with response 
curve 

-(+�) = exp	(−exp	(�d+�))                   (24) 

The log-likelihood function of the Gumbel regression is 
given by 

!(�) =D{��
�

���
ln	[-(+�)] + (1 − ��)ln	[1 − -(+�)]} 

=D{�� ln[exp[− exp(�d+�)]] + (1 − ��) ln[1 − exp[− exp(�d+�)]]}
�

���
 

= ∑ {��[− exp(�d+�)] + (1 − ��) ln[1 − exp[− exp(�d+�)]]}����                                               (25) 

The score function is given by 

Au
A
v = ∑ +�w ln	[-(+�)] ���g(	�)��g(	�)

����  For j = 0,1, …… . . y  (26) 

To identify the initial values for �  we choose �{j = 0 
for	j = 1, ………y by substituting �{j = 0 for j = 1,……… . y in equation 2.26 we obtain 

�) = ln	[−(�)]                         (27) 

Afterward by substituting the initial values for the 
parameter h	in equation 2.24 we obtain the estimate of ξ for 
the first step of the relative procedure. By using this estimate 
of ξ in equation 2.23 we obtain the estimates of �w  with j = 1,……… , y for the first step in GEV regression. 

Case II: when ξ<0 
The GEV becomes the Weibull regression model; the 

cumulative distribution is given by 

|(+) = }exp	{−[�	�LM ];, + < F
1, + > F                (28) 

For −∞ < F < +∞, H > 0, y > 0 
Where F  and H(> 0)  are, respectively, a location and a 

scale parameters and y = ~�\~ is a shape parameter. 

The response curve for Weibull is given by 

-(+�) = exp[−�d+�];)	`ℎ*_*	y > 0            (29) 

The response curve of the Weibull regression model is a 
particular case of the GEV response curve for Y < 0. 

The link function of the Weibull regression model is 

[ln	( �
g(	�))]

�B = �d+�                       (30) 

The log-likelihood of the Weibull regression is given by 

!(�, y) =D{��!=[-(+�)] + (1 − ��)ln	[1 − -(+�)]}
�

���
 

= ∑ {−��(�d+�); + (1 − ��)ln	[1 − exp	(−(�d+�));]}����                                   (31) 

The score functions are given by 

Au(
,;)
A
v = −y∑ +�w ef[g(	�)](���g(	�))
x	�(��g(	�)) 	j = 0,1, …… . . , y����                                       (32) 

Au(
,;,�)
A; = −y∑ ln	[-(+�)]ln	[�d+�] ���g(	�)��g(	�)

����       (33) To apply an iterative algorithm, the initial values of �∗	�=�	y∗  for the parameters should be identified. If take 
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y∗ = 1, �w∗ = 0	�"_	j = 1,… . , y and 

�w∗ = ln	[1 − �
��]                               (34) 

We obtain the initial value (35) by substituting �w∗ =0	�"_	j = 1,… . . y	�=�	y∗ = 1 in equation 2.34. 

3. Results and Discussions 

The empirical data analysis is based on set of data for the 
year 2007 for 5000 applicants whose loans were approved in 
one of the Kenya Commercial banks (Backlys Bank of Kenya) 

Fitting the regression model 
Estimating the probability of default using the logistic 

regression model, the factors under study were age, gender, 
job category, the level of education, level of income, debt 
income and marital status. The variable of interest was loan 
status which was code as 1 for defaulters and 0 for non- 
defaulters 

Significance of Predictor Variables 
At 5% of significance, the study found out that intercept, 

age, employment category, the level of income and the debt 
income were statistically significant. 

Table 1. Regression Coefficients. 

 Estimate Std Error Z value Pr(>|z|) 

Intercept -1.6209 0.3686 -4.40 0.0000 
gender -0.0284 0.1171 -0.24 0.8084 
age -0.0408 0.0068 -6.01 0.0000 
ed 0.0243 0.0203 1.19 0.2322 
jobcat -0.0195 0.0391 -0.50 0.6176 
empcat -0.0331 0.0880 -3.77 0.0002 
income 0.0051 0.0011 4.65 0.0000 
debtinc 0.0844 0.0078 10.83 0.0000 
marital -0.1148 0.1175 -0.98 0.3283 

If the estimated regression coefficient of a variable is 
positive, an increase in the value will lead to an increase in 
the estimated PD, holding all other variables constant. When 
the coefficient is negative an increase in its value will 
produce a corresponding decrease in the estimated PD 

The regression coefficients found significant were used to 
build the logistic regression model, which can be used to 
estimate the probability of default. 

�(� = 1/�) = exp	(−1.62 − 0.02 ∗ �#* + 0.332 ∗ *�,��] + 0.005 ∗ a=�"�* + 0.084 ∗ �*�]a=�)1 + exp	(−1.62 − 0.02 ∗ �#* + 0.332 ∗ *�,��] + 0.005 ∗ a=�"�* + 0.084 ∗ �*�]a=�) 
The above model can be used to estimate the probability of default of the customers likely to default loan. The null deviance 

of this model is 2541.6 
Dropping the intercept again we obtain the factors that are significant as shown in Table 2 

Table 2. Regression Coefficients. 

 Estimate Std Error Z value Pr(>|z|) 

gender -0.0825 0.1154 -0.72 0.4743 
age -0.0470 0.0067 -7.03 0.0000 
edu 0.0476 0.0123 -3.87 0.0001 
jobcat -0.0681 0.0378 -1.80 0.0719 
empcat -0.3738 0.0884 -4.23 0.0000 
income 0.0066 0.0011 5.76 0.0000 
debtinc 0.0775 0.0077 10.06 0.0000 
marital -0.2043 0.1149 -1.78 0.0752 

For the second model, five factors are significant but this time level of education is significant together with age, 
employment category, the level of income and debt income. 

The regression coefficients found significant were used to build the logistic regression model which can be used to estimate 
the probability of default. 

�(� = 1/�) = exp	(−0.047 ∗ �#* + 0.047 ∗ *�� − 037 ∗ *�,��] + 0.006 ∗ a=� + 0.077 ∗ �*�]a=)1 + exp	(−0.047 ∗ �#* + 0.047 ∗ *�� − 037 ∗ *�,��] + 0.006 ∗ a=� + 0.077 ∗ �*�]a=) 
This model can again be used to estimate the probability of default of the customers likely to default loan. The null deviance 

of this model is 6931.5 
This model is a better fit than the first model since it has higher null deviance. 
Finally, we can construct a model with the significant factors. We obtain the following regression coefficients in Table 3 

Table 3. Regression Coefficients. 

 Estimate Std Error Z value Pr(>|z|) 

age -0.0442 0.0063 -7.002 0.0000 
edu -0.0647 0.0103 -6.241 0.0001 
empcat -0.4506 0.0790 -5.700 0.0000 
income 0.0069 0.0011 6.122 0.0000 
debtinc 0.0764 0.0076 9.943 0.0000 
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All the regression factors are significant, and there is no change in null deviance 

�(� = 1/�) = exp	(−0.044 ∗ �#* − 0.0647 ∗ *�� − 0.45 ∗ *�,��] + 0.006 ∗ a=� + 0.076 ∗ �*�]a=)1 + exp	(−0.044 ∗ �#* − 0.0647 ∗ *�� − 0.45 ∗ *�,��] + 0.006 ∗ a=� + 0.076 ∗ �*�]a=) 
Again this equation can be used to predict the probability 

default. 
Fitting the GEV regression model 
When the percentages of defaulters are very low, the 

defaulters’ characteristics are more informative than those of 
non-defaulters. Therefore, defaulters’ features can be better 
represented by the tail of the response curve for the values 
close to 1 which can be modeled using the GEV regression 
model. 

Significance of the predictor variables 
At 5% of significance, the study found out that intercept, 

age, employment category, level of income and debt income 
were statistically significant as shown in Table 4 

Table 4. Regression Coefficients. 

 Estimate Std Error Z value Pr(>|z|) 

Intercept -0.6374 0.1720 -3.704 0.0000 
gender -0.0121 0.0557 -0.218 0.8277 
age -0.0185 0.0029 -6.260 0.0000 
ed 0.0089 0.0094 0.945 0.3446 
jobcat -0.0072 0.0186 -0.389 0.6972 
empcat -0.1764 0.0395 -4.458 0.0000 
income 0.0027 0.0005 5.524 0.0000 
debtinc 0.0447 0.0039 11.189 0.0000 
marital -0.0656 0.0558 -1.174 0.2405 

The value of ξ=-0.25 which means that ξ< 0, this becomes 
the Weibull distribution which is a particular case of GEV 
distribution. Using the significant factors, we can build a 
model which will predict the probability of default using the 
equation below 

�(� = 1/�) = exp	[−(−0.637 − 0.018 ∗ �#* − 0.176∗ *�,��] + 0.002 ∗ a=�"�* + 0.04
∗ �*�]a=�) ��).n�] 

Dropping the intercept again we obtain the factors that are 
significant as shown in Table 5 

Table 5. Regression Coefficients. 

 Estimate Std Error Z value Pr(>|z|) 

gender -0.0422 0.0551 -0.767 0.4432 
age -0.0209 0.0029 -7.206 0.0000 
edu -0.0188 0.0057 -3.293 0.0001 
jobcat -0.0269 0.0179 -1.502 0.1332 
empcat -0.1916 0.0884 -4.858 0.0000 
income 0.0032 0.0004 6.803 0.0000 
debtinc 0.0775 0.0039 10.74 0.0000 
marital -0.0985 0.0551 -1.78 0.0740 

Under this model age, the level of education, employment 
category, the level of income, debt income is statistically 
significant just like in logistic regression model. We use them 
to build another model which can be used to estimate the 
probability of default 

�(� = 1/�) = exp	[−(−0.029 ∗ �#* − 0.018 ∗ −0.176∗ *�,��] + 0.002 ∗ a=�"�* + 0.044
∗ �*�]a=�) ��).n�] 

Predictive accuracy 
For financial institutions the underestimation of the 

probability of default could be very risky. The objective of 
this section shows that the GEV model overcomes the 
drawbacks of the logistic model in the modeling of rare 
events. To avoid over-fitting, data is randomly divided into 
two parts a sample on which the regression models are 
estimated and control sample on which we evaluate the 
predictive accuracy of the models. For comparing the 
models, the study used the confusion matrix which was later 
used to tabulate the predictive accuracy of the model. 

The predictive accuracy of both models is tabulated in 
Table 6 

Table 6. Average forecasting accuracy for different PDs on the sample. 

Sample percentage 

Of defaulters 

Models 

GEV regression 

accuracy 

Logistic regression 

Accuracy 

0.1 0.825(82.5%) 0.814(81.4%) 
0.05 0.834(83.4%) 0.804(80.4%) 
0.025 0.836(83.6%) 0.802(80.2%) 
0.01 0.876(87.6%) 0.794(79.4%) 
0.005 0.901(90.1%) 0.793(79.3%) 

From the table 5, it shows the predictive accuracy of both 
models that is GEV regression model and the logistic 
regression model. The GEV model accuracy improves its 
predictive accuracy by reducing the sample percentage of 
defaulters while the logistic regression model becomes worse 
as the defaulters reduce. The Predictive accuracy of the GEV 
model is always higher than the predictive accuracy of the 
logistic regression. 

4. Conclusion 

The main objective of the study was to come up with a 
regression model that could overcome the drawbacks of the 
logistic regression model in underestimating the PD on loans. 
Since lending is a risky venture, its good for financial 
institutions to take caution by being able to identify the 
probability of default, GEV is a suitable function for 
modeling extreme and rare events. The GEV distribution 
depends on the regression parameters and the shape 
parameter of the GEV distribution. The main advantage of 
the GEV model is the good performance in identifying 
defaults for this characteristic the drawback of the logistic 
regression model of underestimating the PD is overcome. It 
is much more costly to classify a defaulter as a non-defaulter 
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when he is a defaulter. In particular, when a defaulter is 
categorised as a non-defaulter by the model, banks will give 
a loan. If the borrower becomes a defaulter, the bank may 
lose the whole part of the credit exposure. On the contrary, 
when a non-defaulter is categorised as defaulted, the banks 
lose interest on loans only. For this reason, the identification 
of defaulters is very important objective for the bank. By 
reducing the sample percentage of defaults, the predictive 
performance of the logistic regression to identify defaults 
becomes poorer. On the contrary, the accuracy of the GEV 
model to identify defaults improves with reduction the 
sample percentage of default. 

Recommendation 

Banks and financial institutions could improve their 
assessment and efficiency by using GEV models to predict 
the probability of default. The study results found out that the 
GEV model performs better than the logistic regression 
model for rare events. More studies can be carried out using 
this model in estimating the probability of bank default and 
establish the reasons of collapsing of banks in Kenya 
economy. Further studies can be done on the same work 
using the GEV link function in a generalized additive model. 
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