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Abstract: In many mixture-process experiments, restricted randomization occurs and split-plot designs are commonly 

employed to handle these situations. The objective of this study was to obtain an optimal split-plot design for performing a 

mixture-process experiment. A split-plot design composed of a combination of a simplex centroid design of three mixture 

components and a 2
2
 factorial design for the process factors was assumed. Two alternative arrangements of design points in a 

split-plot design were compared. Design-Expert
®
 version 10 software was used to construct I-and D-optimal split-plot designs. 

This study employed A-, D-, and E- optimality criteria to compare the efficiency of the constructed designs and fraction of 

design space plots were used to evaluate the prediction properties of the two designs. The arrangement, where there were more 

subplots than whole-plots was found to be more efficient and to give more precise parameter estimates in terms of A-, D- and 

E-optimality criteria. The I-optimal split-plot design was preferred since it had the capacity for better prediction properties and 

precision in the measurement of the coefficients. We thus recommend the employment of split-plot designs in experiments 

involving mixture formulations to measure the interaction effects of both the mixture components and the processing 

conditions. In cases where precision of the results is more desirable on the mixtures as well as where the mixture blends are 

more than the sets of process conditions, we recommend that the mixture experiment be set up at each of the points of a 

factorial design. In situations where the interest is on prediction aspects of the system, we recommend the I-optimal split-plot 

design to be employed since it has low prediction variance in much of the design space and also gives reasonably precise 

parameter estimates.  

Keywords: Optimality, Split-Plot Design, Efficiency, Mixture Components, Process Variables 

 

1. Introduction 

In many practical situations, the response for the mixture 

may not just depend on the mixture components but also on 

experimental conditions that are referred to as the process 

variables. Mixture-process variable experiments are common 

in many fields such as food, chemical, pharmaceutical and 

processing industries. The process variables are not part of 

the mixture components but their levels when changed could 

affect the blending properties of the components [4]. Many of 

the mixture-process experiments are usually designed by 

combining a mixture design for the mixture ingredients and a 

process design for the process factors. The choice of the 

combination of the mixture design and the process variable 

design depend on the purpose of the design. Kowalski, 

Cornell and Vining [10] proposed a Split-Plot Design (SPD) 

for mixture-process variable experiments. The basic split-plot 

design involves assigning the levels of one factor to main 

plots (referred to as whole-plots) which can be arranged as a 

Completely Randomised Design (CRD), Randomised 

Complete Block Design (RCBD) or a Latin Square Design 

(LSD) and then assigning the levels of the second factor to 

sub-plots within each main plot. The mixture-process 

variables in the SPD structure have two levels of 

randomization leading to two types of errors; the whole plot 

and the subplot errors. Montgomery [13] recommended split-

plot design as the way to deal with restricted randomization. 
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A split-plot experiment can be carried out by randomly 

selecting a combination of levels of the process variables and 

running all mixture blends at these levels. Then, another 

combination of the process variable levels is randomly 

chosen and all mixture blends run at this combination. This 

process is repeated until all combination of levels of the 

process variables is performed. In such a case, the process 

variables are the whole-plot factors of the experiment, while 

the mixture components are the sub-plot factors. On the other 

hand, a mixture blend can be randomly chosen and run over 

all combinations of the process factors. This process is 

repeated until all the mixture blends are run over all the 

levels of combinations of the process factors. In this later 

case, the mixture components are the whole-plot factors and 

the process variables are the sub-plot factors.  

Optimal designs are usually constructed using statistical 

packages and design optimality criteria such as A-optimality, 

D-optimality, E-optimality, G-optimality and I-optimality are 

employed. The criteria are chosen depending on the 

experimenter’s interest. To evaluate and compare different 

designs, a number of methods have been proposed in literature. 

The concept of rotatability for the design was proposed by [2]. 

Rotatability requires constant prediction variance at all points 

that are the same distance from the design centre. When the 

interest is in the prediction variance at a specific location in the 

design space, design efficiency becomes a good measure for 

comparing and evaluating designs, [1]. The optimal criteria 

that focus on prediction variance at specific location in the 

design space include the Q-optimality, the V-optimality, I-

optimality and the G-optimality, [1]. When the experimenter’s 

interest is on obtaining precise parameter estimates, D-

optimality as advocated by [12], is useful. A-and E-optimality 

criteria are also used for precise parameter estimates. Since the 

prediction variance keeps changing at different points in the 

design, prediction capability of a design should be based on the 

overall distribution of the prediction variance over the whole 

design space rather than using the estimate of a single point. 

This led to the introduction of the graphical techniques to give 

a measure of the overall distribution of the prediction variance. 

The three dimensional variance dispersion graphs (VDG) for 

mixture-process variables was introduced first by [6] and later 

proposed by [8]. Fraction of design space (FDS) plots involve 

calculation of prediction variance throughout the design space 

and then the fraction of the design space that is less than or 

equal to a given prediction value is determined. FDS plots for 

SPDs were developed by [11]. The graphical assessment of 

experimental designs using FDS plots in R statistical 

environment was demonstrated by [14]. Good prediction 

properties are essential for optimization as [13] posits and I-

optimal designs provide this. A number of commercial 

statistical packages such as Design-Expert or JMP employ D- 

and I-optimality criteria for constructing the optimal designs. 

When a single design is to be employed in an experiment and 

the experimenter has interest in both precise parameter 

estimates and good prediction capability, then a design with 

good level of both properties would be preferred. 

This study focussed on obtaining an optimal split-plot 

design that could be used to perform a mixture-process 

experiment that would give both precise parameter estimates 

and have good prediction capabilities. To do this, we first 

compared different split-plot design arrangements using A-, D- 

and E-efficiencies to obtain the most suitable design 

arrangement for a mixture-process experiment. This was 

followed by the construction of a D- and an I-optimal split-plot 

designs using Design-Expert software and employing the most 

suitable design arrangement obtained in the first step. The 

precision of the parameter estimates of the D- and I-optimal 

designs was measured and compared using A-, D- and E-

optimal values and efficiencies respectively.The prediction 

capability of the two SPDs was measured using FDS plots. 

2. Material and Methods 

2.1. Design Arrangement Comparison 

A split-plot design composed of a combination of a 

simplex centroid design of three mixture components and a 

2
2
 factorial design for two process factors was assumed for 

illustration purposes. The split-plot design consisted of 28 

treatment combinations. The three mixture components were 

denoted as ��, ��, �� and set up in a simplex-centroid design 

with the following seven blends; 

���, ��, ��� � �1,0,0�, �0,1,0�, �0,0,1�, ��� , �� , 0� , ��� , 0 ��� , �0, �� , ��� , ��� , �� , ���                        (1) 

The two process factors coded as 
�and 
� had two levels 

each which were denoted as	
� � �1 and 
� � �1, laid out 

as: �
�, 
��� � ��1,�1�, ��1,1�, �1, �1�, �1,1�                 (2) 

There are two alternative arrangements for the split-plot 

design which involve having either: the seven mixture blends 

in equation (1) set up at each of the four points in equation 

(2) of the factorial arrangement, as shown in fig. 1 (a) or the 

factorial design set up at each of the seven points of the 

simplex centroid design as shown in fig. 1 (b) below: 

 

(a) 
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(b) 

Figure 1. Arrangement for the 28 split-plot design points. 

The corresponding model for each of the design 

arrangements (a) or (b) in fig. 1 was: 

Model 1, for design arrangement (a) ���, 
� � δ���� � δ���� � δ���� � δ��� ���� � δ��� ���� �δ��� ���� � δ���� ������ � δ��
��� � 	δ��
��� � δ��
��� �δ��� 
����� � δ��� 
����� � δ��� 
����� � δ���� 
������� �δ��
��� � δ��
��� � δ��
��� � δ��� 
����� � δ��� 
����� �δ��� 
����� � δ���� 
������� � δ���
�
��� � δ���
�
��� �δ���
�
��� � δ����
�
����� � δ����
�
����� � δ����
�
����� �δ����� 
�
�������                                 (3) 

Model 2 for design arrangement (b); ���, 
� � δ���� � δ��
��� � δ��
��� � δ���
�
��� � δ���� �δ��
��� � δ��
��� � δ���
�
��� � δ���� � δ��
��� � δ��
��� �δ���
�
��� � δ��� ���� � δ��� 
����� � δ��� 
����� �δ����
�
����� � δ��� ���� � δ��� 
����� � δ��� 
����� �δ����
�
����� � δ��� ���� � δ��� 
����� � δ��� 
����� �δ����
�
����� � δ���� ������ � δ���� 
������� �δ���� 
������� � δ����� 
�
�������          (4) 

To decide on which of the two design arrangements 1(a) or 

(b) was more efficient, some design comparison strategies 

were employed on the two to find out which one was more 

efficient as explained in section (2.2) below.  

2.2. Optimal Split-Plot Design Construction 

The Design-Expert
®
 version10 software [5] was used to 

construct an I-optimal completely randomized combined 

mixture-process design using the point-exchange algorithm. 

The software was also used to construct a D-optimal split-

plot design. The two designs had the same number of design 

points. The I-optimal completely randomized mixture 

process design was then arranged to fit a split-plot format. 

The two split-plot designs were then compared. 

2.3. Evaluation and Comparison of Designs 

A design that has small number of runs minimizes the cost 

of performing the experiment, but this should not be at the 

expense of compromising other important aspects of a good 

design. A design with low prediction variance throughout the 

design space and with high capability of estimating the 

corresponding model parameters is more preferred. The 

methods used in evaluating and comparing designs include 

the use of design efficiency, from the alphabetic criteria 

and/or use of graphical techniques. This study employed A-, 

E-, and D- criteria to compare the efficiency of the 

constructed designs in giving precise parameter estimates and 

also the fraction of design space plots to evaluate their 

prediction capabilities. 

The statistical model corresponding to a split-plot design, 

with � observations arranged in � whole-plots each of size ��, (� � 1, 2, … , �), is a linear mixed model of the form � � �� � � � !                                (5) 

where �	 is the (� " 1) vector of observed responses, � is the 

( � " # ) design matrix containing the settings of the 

explanatory variables in each experimental run, with # being 

the number of model parameters, � is the associated (# " 1) 

vector of model parameters, � is a matrix of zeroes and ones 

assigning the observations to the whole-plots,   is the� -

dimensional vector of whole-plot effects while ! is the (� "1) vector of random errors. Model (5) contains two random 

components, one for the whole-plot ( ) and the other for the 

sub-plot (!), [9]. It is usually assumed that $�!� � %& and '()�!� � *+�,-,                             (6) $� � � %.	 and '()� � � */�,0,                           (7) 

And '()�1, 2� � %."&                            (8) 

This can be presented as: 

 !~4�0-, *+�5-� , 1~4�00, */�50�  and '()�2, 1� � 0-"0 . 

Under these assumptions the variance-covariance matrix of 

the observations, )67	�8�  is written as 9 � *+�,- � */���� 
which can be re-written as  9 � *+��,- � �����                               (9) 

where � � */�/*+�  is a measure of the extent to which the 

observations within the same whole plot are correlated and is 

referred to as variance component ratio, [3]. For the purpose 

of design construction, it is the ratio of both variance 

components, �, that matters but not their absolute magnitude, 

[9]. Let the entries of � be arranged per whole-plot, then 

9 � ;<� 0⋯ 0⋮ ⋱ ⋮0 0⋯ <0@                        (10) 

��� � A1-B1-B
�0 	0	1-C1-C� 00 00⋮0 ⋮0 ⋱	0 ⋮1010� D	                   (11) 

The length of each 1-Eis ��, the number of sub-plot runs 

within the whole-plot. The information matrix on the 

unknown fixed model parameters β is given by F � �G9H��. 
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The variance components */�  and *+�  and matrix V are 

unknown and hence need to be estimated as shown in 

equation (12) below. <I � *J+��5- � �KK��                          (12) 

When different values of � are substituted in equation (13), 

estimates of < can be obtained and values of L calculated as: L � MG<IH�M                              (13) 

In cases where the random error terms as well as the 

whole-plot effects are normally distributed, the maximum 

likelihood estimate of β is the generalized least squares 

(GLS) estimate and not the ordinary least squares (OLS) 

estimate, [9]. Consequently, the estimators for the unknown 

model parameters β are:  NO � �MG<H�M�H�MG<H�8                      (14) 

and the variance-covariance matrix of the estimators is given 

by )67PNOQ � �MG<H�M�H�                       (15) 

Once the estimates of the variance components are 

obtained, they are substituted in equation (13) whose value is 

in turn substituted in formula (14) to get the so-called 

feasible GLS estimator, [9]. NO � ��G9RH���H��G9RH�8                        (16) 

As a result, the variance-covariance matrix in equation 

(15) could be approximated by )67PNOQ � �MG<IH�M�H�                            (17) 

2.3.1. A-Optimality Criterion 

The A-optimality criterion is based on a measure of the 

minimum average variance of the parameter estimates. Thus, 

it seeks to minimize the trace of the inverse of the 

information matrix. For a split-plot design, it is given by min V7�MG<H�M�H�                              (18) 

On comparing two designs W�  andW� , the design with a 

lower value from formula (18) is considered more efficient 

and is preferred in terms of A-optimality criterion.  

2.3.2. D-Optimality Criterion 

The D-optimal designs are commonly used for precise 

parameter estimation. Its aim is to maximize the determinant 

of the information matrix, thus in turn minimizing the 

generalized variance. For this criterion, a design that makes 

the information matrix large in some sense is desirable. 

The D-efficiency is calculated as 

X|L�| |L�|⁄ [� \]                                  (19) 

where L� and L� are the information matrices for design W� 

and W�  respectively, while #  is the number of model 

parameters. Design W�  is better than W�  in terms of D-

optimality criterion if a D-efficiency calculated from formula 

(19) is larger than 1. 

2.3.3. E-optimality Criterion 

The aim of the E-optimality criterion is to minimize the 

maximum variance of all the possible normalized linear 

combinations of parameter estimates. This implies 

maximizing the minimum Eigenvalue of the information 

matrix. It is given by the maximum Eigen value of min V7�MG<H�M�H�or minimum Eigen value of (MG<H�M). 

E-efficiency is given by 

$�W�� � ^_`a�b�cB��^_`a�b�cC��                      (20) 

If def-�L�W��� > def-�L�W��� , then design W�  is more 

efficient than design W�  and is preferred in terms of E-

optimality criterion. 

2.3.4. The FDS Plots 

Fraction of design space plots are based on the argument 

that for any accurate prediction over the entire design space χ, 

the fraction of the volume of χ that is associated with various 

values of the split-plot design must be taken into account [7]. 

On the other hand, the variance dispersion graphs usually give 

equal weight to the scaled prediction variance (SPV) for all 

radii, r, despite the fact that the fraction of the volume of the 

design region represented by the hypersphere of each radius 

differs substantially. This may be interpreted to mean that a 

small SPV at a radius close to the origin may not give as a 

good prediction as a similar SPV value at a larger r, a 

drawback of the VDG. The FDS criterion however, expresses 

the volume of the set R containing all points in χ with SPV 

lower than ν as a proportion of the total design space volume, 

where ν is a fixed value of the SPV h	�M, W-) and i = {M ∈
χ:	h(M, W-) < )n. 

The FDS criterion is defined as (v, χ) = ϕH� q dxt , 

where Φ is the volume of χ. For each specified SPV value v, 

the FDS plot graghs v against FDS(v). FDS plots display the 

fraction of design space where SPV is less than or equal to v, 

[3]. The FDS plots in this study were constructed using [5]. 

The purpose of the evaluation and comparison is to help 

identify the most competitive optimal design which can then 

be employed in performing an experiment appropriately.  

3. Results and Discussion 

3.1. Split-Plot Design Arrangement Comparison 

The alphabetical criteria for optimality A, D and E were 

used to compare the two arrangements as explained in 

section (2.3). The KK′  matrix in equation (3) for design 

arrangement 1(a) was 

KK� = A1u1u�v v	1u1u� vv vvvv vv 	1u1u�v v1u1u� D 
where, 1u1u′ was a 7x7 matrix of ones and each 0 represents a 
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7x7 matrix of zeros. 

For design arrangement 1(b), the matrix KK′ was of order 

7x7 

KK� �
wxx
xy1z1z�0 01z1z� …… 0 	00 	0⋮ ⋮ ⋱ ⋮ ⋮0	 	00	 	0 ⋯… 1z1z� 00 1z1z� {|

||} 
where, 1z	 was a 4x4 matrix of ones and each 0 represents a 

4x4 matrix of zeros.  

The identity matrix 5- in equation (12) was the 5�~ of order 

28 x 28 since there was a total of 28 design points in each of 

the arrangements. Values of variance component ratio (η) in 

equation (12) used in this section for comparison of design 

arrangement 1(a) and (b) were 0.1, 1 and 10. 

The variance-covariance matrix V was obtained as in the 

equation (12) and was then substituted in equation (13) to 

obtain the information matrix M using the R statistical 

software. The X matrix in equation (13) was a 28x28 design 

matrix representing the fixed effects of combined mixture 

and process variables, ordered according to the design 

arrangement 1(a) or (b).  

Using � = � 

A-optimal criterion 

The V7{XL(W�)[H�n = 1267.461 V7{XL(W�)[H�n = 1979.947 V7{XL(W�)[H�n < V7{XL(W�)[H�n 
Therefore, design arrangement 1(a) is more efficient than 

design arrangement 1(b) in terms of A-optimality and it is 

therefore preferred. 

D-optimality criterion |L(W�)| = 2.1953e − 13	 |L(W�)| = 1.150969e − 14 

����	�{X|L(W�)|[ X|L(W�)|[n⁄ BC� = X2.1953e − 13	 1.150969e − 14⁄ [ BC� = 1.11104 

Since the ����value is greater than 1, then the design arrangement 1(a) is more efficient than design arrangement 1(b) in 

terms of D-optimality criterion. 

E-optimality criterion def-L(W�) = 0.003336827 def-L(W�) = 0.001277800 

def-L(W�) > def-L(W�)or
^_`ab(c�)^_`ab(c�) = �.������~�u	�.����uu~�� = 2.61 > 1 

Hence, design arrangement 1(a) is more efficient than design arrangement 1(b) and is therefore preferred in terms of E-

optimal criterion. 

With � = 0.1 and 10, a table was created to summarize the findings as below: 

Table 1. Optimal Values for Design Arrangement in fig. 1 Compared at Different Values of the Variance Component Ratio. 

Variance component ratio (ɳ) Optimality criterion 
Optimal-value 

Efficiency Comment 
Design (a) Design (b) 

η= 0.1 A-optimality 1264.76 1336.009 0.947 (a) preferred 

 
D-optimality 1.08e-10 8.53e-11 0.96 (a) preferred 

 
E-optimality 0.00333683 0.00287598 1.16 (a) preferred 

η= 1 A-optimality 1267.461 1979.947 0.64 (a) preferred 

 
D-optimality 2.20e-13 1.15e-14 1.11104 (a) preferred 

 
E-optimality 0.003336827 0.0012778 2.61 (a) preferred 

η= 10 A-optimality 1294.467 8419.332 0.1537 (a) preferred 

 
D-optimality 3.54e-17 4.62e-21 1.1426 (a) preferred 

 
E-optimality 0.003336795 0.000194284 17.17 (a) preferred 

 

From the results in table 1, the most efficient split-plot 

design arrangement, in terms of E-, D- and E-optimality was 

found to be where the mixture blends were run at each of the 

points of the factorial design process conditions, (C. F. fig. 

1(a)). This agreed with Cornell (2002) recommendation.  

3.2. Optimal Split-Plot Designs 

Design arrangement 1(a) was employed in the optimal 

split-plot design construction in this section. Two optimal 

split-plot designs: D-optimal and I-optimal were constructed 

using Design-Expert
®
 version10.The alphabetical optimality 

criteria A-, D- and E were employed to compare the two 

designs. FDS plots for the two designs were evaluated. The 

D-optimal design was coded as W� and the I-optimal design 

was coded as Wf. Each of the two designs had 38 points; 28 of 

which were model based, to estimate the 28 model 

parameters in equation (3), five additional points for testing 

the fitness of the model to the experimental data and another 
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additional five points were replicate points to enable the 

calculation of the standard error. The main difference 

between the two optimal designs was in the position of the 

replicated points in the design space; the D-optimal design 

had the replicated points on the edges and vertices of the 

simplex as presented in table 2 while the I-optimal design 

had the replicates in the inside of the simplex mainly on the 

centroid as seen in table 3.  

Table 2. The D-optimal split-plot design (ξd). 

Run order x1 x2 x3 z1 z2 

1 0.3333 0.3333 0.3333 1 1 

2 0 0 1 1 1 

3 0.5 0 0.5 1 1 

4 0 0.5 0.5 1 1 

5 0 0 1 1 1 

6 0.5 0.5 0 1 1 

7 1 0 0 1 1 

8 0 1 0 1 1 

9 1 0 0 1 1 

10 0.5 0.5 0 -1 1 

11 0 0.5 0.5 -1 1 

12 0.3333 0.3333 0.3333 -1 1 

13 1 0 0 -1 1 

14 0 1 0 -1 1 

15 0 0 1 -1 1 

16 0.5 0 0.5 -1 1 

17 1 0 0 -1 1 

18 0 1 0 1 -1 

19 0 0 1 1 -1 

20 0.5 0 0.5 1 -1 

21 1 0 0 1 -1 

22 0 0.5 0.5 1 -1 

23 1 0 0 1 -1 

24 0.5 0.5 0 1 -1 

25 0.3333 0.3333 0.3333 1 -1 

26 0.5 0.5 0 -1 -1 

27 1 0 0 -1 -1 

28 0 1 0 -1 -1 

29 0.3333 0.3333 0.3333 -1 -1 

30 0 0 1 -1 -1 

31 0.5 0 0.5 -1 -1 

32 0 1 0 -1 -1 

33 0 0.5 0.5 -1 -1 

34 0.1667 0.6667 0.1667 1 0 

35 0.1667 0.6667 0.1667 0 -1 

36 0 1 0 0 0 

37 0.1667 0.6667 0.1667 -1 0 

38 0.1667 0.6667 0.1667 0 1 

Table 3. The I-optimal split-plot design (ξi). 

Run order x1 x2 x3 z1 z2 

1 0.5 0.5 0 -1 -1 

2 0.5 0 0.5 -1 -1 

3 0 1 0 -1 -1 

4 0 0 1 -1 -1 

5 0.3333 0.3333 0.3333 -1 -1 

6 0 0.5 0.5 -1 -1 

7 0.3333 0.3333 0.3333 -1 -1 

8 0.3333 0.3333 0.3333 -1 -1 

9 1 0 0 -1 -1 

10 0.3333 0.3333 0.3333 1 -1 

11 1 0 0 1 -1 

12 0.3333 0.3333 0.3333 1 -1 

13 0 1 0 1 -1 

14 0.5 0 0.5 1 -1 

15 0 0.5 0.5 1 -1 

16 0.5 0.5 0 1 -1 

17 0 0 1 1 -1 

18 0 0 1 -1 1 

19 0 0.5 0.5 -1 1 

20 0.5 0 0.5 -1 1 

21 0.3333 0.3333 0.3333 -1 1 

22 1 0 0 -1 1 

23 0.3333 0.3333 0.3333 -1 1 

24 0.5 0.5 0 -1 1 

25 0 1 0 1 1 

26 0.3333 0.3333 0.3333 1 1 

27 0.5 0.5 0 1 1 

28 1 0 0 1 1 

29 0 0.5 0.5 1 1 

30 0.5 0 0.5 1 1 

31 0.3333 0.3333 0.3333 1 1 

32 0 1 0 1 1 

33 0 0 1 1 1 

34 0 1 0 0 -0.5 

35 0 0 1 0 -0.5 

36 0.1667 0.6667 0.1667 1 0 

37 0.6667 0.1667 0.1667 0 0 

38 0.1667 0.6667 0.1667 0 1 

For the comparison purposes, only 33 design points from 

each of the designs W� and Wf were included since there was 

no model testing that was involved at this stage. The included 

design points were the 28 model points and the 5 replicated 

points. 

3.3. Optimal Split-Plot Design Comparison 

Optimality tests were conducted following the steps in 

section (2.3). 

The results of the optimality tests were as follows: 

3.3.1. A-optimality Criterion 

The V7{XL�W��[H�} � 1257.109 V7{XL(Wf)[H�n = 871.795 V7{XL(Wf)[H�n < V7{XL(W�)[H�n 
I-optimal split-plot design was more efficient in terms of 

A-optimality than the D-optimal split-plot design. 
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3.3.2. D-optimality Criterion |L(W�)| = 3.947083e � 12 

|L(Wf)| = 2.960312e � 12����	�{X|L(W�)|[ X|L(Wf)|[n⁄ B�� = 	X3.947083e � 12	 2.960312e � 12[⁄ B�� � 1.008756 

This D-efficiency value was very close to 1, implying that 

the efficiency of this I-optimal design in terms of D-

optimality is acceptable. 

3.3.3. E-optimality Criterion def-L�W�� � 0.003348500 def-L�Wf� � 0.004775119 def-L�Wf� > def-L�W�� 

Hence, the I-optimal split-plot design was more efficient 

than the D-optimal split-plot design in terms of the E-

optimality criterion. Therefore, in terms of the three 

alphabetical optimality criteria used for the comparison of the 

two split-plot designs, the I-optimal design performed better. 

The evaluation was then extended to the FDS plots. 

3.3.4. The FDS Plots 

The FDS plot for the D-optimal split-plot design was as 

below: 

 

Figure 2. FDS plot for the D-optimal Split-plot Design. 

 

Figure 3. FDS Plot for the I-optimal Split-plot Design. 
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Fig. 2 showed a relatively uniform distribution of the 

standard error mean across the design space but towards the 

boundaries, the standard error mean increased sharply to 

quite a high value. The range of the standard error mean 

spread across the design was quite wide in fig. 2, 1.636 units, 

compared to 0.748 units in fig. 3. In fig. 3 also, much of the 

volume of the design space was below the average of the 

standard error mean and was relatively more uniformly 

spread compared to fig. 2. In addition, the standard error 

mean values were smaller, with as low as 0.252 and the 

highest value one unit in the I-optimal split-plot design as 

opposed to the D-optimal split-plot design whose smallest 

value was 0.477 and stretched even to 2.113. The standard 

error of the coefficient estimates gives a measure of the 

accuracy of predictions. The smaller the standard error value 

is, the better, for then the more the precise the measurement 

of the coefficients and the better the prediction.  

Notably, FDS plots given in section (3.3.4) were more 

informative about the prediction capacities and precise 

estimation of the coefficient estimates of the design than the 

alphabetic criteria measures. The plots display the values of 

the standard error mean and hence the prediction patterns 

throughout the design space. They also show how precise the 

coefficient estimates would be measured throughout the 

design space as opposed to single values from the alphabetic 

criteria. This agrees with recommendations made by [3 and 

15]. The FDS plots were found to be a commendable tool in 

design evaluation as they show the distribution of the 

prediction variance throughout the design space as opposed 

to a single value given by the usual alphabetic criteria. 

4. Summary, Conclusions and 

Recommendations 

4.1. Summary of the Findings 

In section 3.1, two alternative arrangements of design 

points in a split-plot design were compared. In the first 

arrangement, seven mixture blends were set up at each of 

four points of the 2
2
 factorial design. The process factors 

were the whole-plots and the mixture components the sub-

plots. In the second arrangement, the 2
2 

factorial design was 

set up at each of seven points of the simplex centroid design. 

This resulted in seven whole-plots and four sub-plots. The 

first arrangement was found to be more efficient and to give 

more precise parameter estimates in terms of A-, D- and E-

optimality criteria. In this arrangement, there were more sub-

plots than whole-plots and the researcher was interested in 

getting more precise measurements among the mixtures. The 

split-plot design gave room to measure the effect of change 

of process factors on the different mixture blends.  

In section 3.2, I- and D-optimal designs were constructed. 

The efficiency of the two optimal designs in terms of A-, D- 

and E-optimality criteria was compared and their FDS plots 

obtained. I-optimal split-plot design was found to be more 

efficient in terms of A- and E- optimality than the D-optimal 

split-plot design, thus implying better precision of parameter 

estimates. The FDS plots displayed the distribution of 

prediction variance throughout the design space. I-optimal 

split-plot design was preferred in terms of prediction since it 

had lower prediction values throughout the design space than 

the D-optimal split-plot design. Overall, the I-optimal split-

plot design was preferred since it had the capacity for better 

prediction properties and precision in the measurement of the 

coefficients. 

4.2. Conclusions and Recommendations 

Split-plot design allows the researcher to model the effect 

of the mixture components and their process conditions 

simultaneously. The interaction effects of both mixture 

design and the factorial design can effectively be measured 

using this split-plot design. We thus recommend the 

employment of split-plot designs in experiments involving 

mixture formulations to measure the interaction effects of 

both the mixture components and the processing conditions. 

In cases where precision of the results is more desirable on 

the mixtures and also where the mixture blends are more than 

the sets of process conditions, the research recommends that 

the mixture experiment be set up at each of the points of a 

factorial design. 

We also recommend to other researchers in the area of 

response surface methodology the use of Design-Expert
®
 

software in the construction of optimal designs and the 

fraction of design space plots. This software offers clear 

instructions that are easy to follow and produce reliable 

results. To a researcher whose interest is on prediction 

aspects of the system and is also keen on getting precise 

parameter estimates, we recommend the I-optimal split-plot 

design to be employed since it has low prediction variance in 

much of the design space and also gives reasonably optimal 

parameter estimates. In addition, optimal split-plot designs 

would help to reduce the number of runs in an experiment to 

only those that optimize the process. 
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