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Abstract: The purpose of this paper is making a construction and generalization of Molaei’s generalized groups by using 

construction of the Rees matrix semigroup over a polygroup H and a matrix with entries in H. We call it “Molaei’s generalized 

hypergroups” and we give some examples. 
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1. Introduction 

In [10] generalized groups or completely simple 

semigroups is introduced as a class of algebras of interest in 

physics and they are an interesting generalization of groups. 

In [1], it is proved the generalized groups are the completely 

simple semigroups. Aaújo and Konieczny used the Rees 

matrix semigroup, (see [8]) over a group and they showed 

that the Molaei’s generalized groups are the completely 

simple semigroups. In this paper we change the group to the 

polygroup and we obtain a new construction, by using this 

construction we can define “Molaei’s generalized 

hypergroup” and we give some examples. 

Let H be a non-empty set. A hyperoperation on H is a 

function from H×H to P
*
(H), which P

*
(H) is the set of all 

non-empty subsets of H. A hypergroupoid is the couple (H, 

*), where H is a non-empty set and “*” is a hyperoperation 

on H, i.e., *: H×H→P
*
(H). As usual, we write a*b = * (a,b), 

for all a and b in H. If M and N belong to P
*
(H) and a be an 

element of H, we define: 

{ }

{ }
,

: , : ,

: .

m M n N

M N m n M a M a

a N a N

∈ ∈

∗ = ∗ ∗ = ∗

∗ = ∗

∪
 

The relational notation M ≈ N is used to assert that M and 

N have an element in common, i.e., M ∩ N is non empty set. 

We recalled the following definitions: [3, 4, 6, 9] 

1) the hyperoperatoin ‛ * ’ is associative, if for every 

elements a, b and c of H, (a*b)*c=a*(b*c); 

2) the hypergroupoid (H, *) is semihypergroup, if the 

hyperoperation ‛ * ’ is associative;  

3) the hypergroupoid (H, *) is quasihypergroup, if for all a 

of H, a*H = H*a = H;  

4) the hypergroupoid (H, *) is hypergroup if it is both 

quasihypergroup and semihypergroup,  

5) the hypergroup (H, *) is polygroup if there exist a 

unique element e in H, which for every a in H,  

e * a = a * e = {a}, and there exists a unitary operation  
-1 

: H → H, by a maps to a
-1

, which for every elements a, b 

and c in H, if a be an element of b * c then b be an element of 

a * c 
-1 

and c be an element of b 
-1

 * a. 

As usual, this polygroup is demonstrated by < H, *, e, 
-1

 >. 

We refer to [2, 5, 6, 7], for more details about polygroups. 

Let < H, *, e, 
-1

 > be a polygroup and K be a non-empty 

subset of H, we denoted K
-1

 = {k
-1

: k be an element of K}, it 

is easy to show that, the following axioms hold for every a 

and b in H, 

(a-1) -1 = a, e -1 = e, e є (a * a-1) ∩ ( a-1 * a ), (a * b)-1 = b-1 * a-1. 

2. Molaei’s Generalized Hypergroups 

In this section, we consider a polygroup and by using the 

Rees matrix semigroup’s structure over polygroup, we 

construct a new structure and obtain three properties of this 

new structure. Theorem 2.1, 2.2 and 2.3 guide us inspire the 

definition of Molaei’s generalized hypergroups. 

Let < H, *, e, 
-1

 > be a polygroup and let I, Λ be non-

empty sets and M be a map from Λ × I to H, by M (λ, i) = 
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mλi. 

Assume that MGH (H; I, Λ, M):= I × H × Λ, We define 

the following hyper-composition: 

○: MGH (H; I, Λ, M) × MGH (H; I, Λ, M) → P
*
 (MGH (H; 

I, Λ, M)) 

((i, x, λ), (j, y, µ)) ֏  (i, x, λ) ○ (j, y, µ), 

which for all i and j in I, for all x and y in H and for all λ and 

µ in Λ, 

(i, x, λ) ○ (j, y, µ):= {i} × (x * mλj * y)× {µ}. 

Theorem 2.1. MGH (H; I, Λ, M) is a semihypergroup. 

Proof. Let i and j in I, λ and µ in Λ and a, b, c in H. Since 

(a * mλi * b) is a non-empty subset of H, so 

{} ≠ (i, x, λ) ○ (j, y, µ) є P
*
 (MGH (H; I, Λ, M)). 

Therefore “○” is a hyperoperation. Now we check the 

associative property of hyperoperation “○”. 

We have the following equations: 

 (i, a, λ) ○ ((j, b, µ) ○ (k, c, υ) = (i, a, λ) ○ ({j} × (b * mµk * c) × {υ})) 

 
= (i, a, λ) ○

* *ks b m cµ∈
∪ (j, s, υ) 

 
= 

* *ks b m cµ∈
∪ (i, a, λ) ○ (j, s, υ) 

 
= 

* *ks b m cµ∈
∪  {i} × (a * mλj * s) × {υ} 

 
= {i} × (

* *ks b m cµ∈
∪  a * mλj * s) × {υ} 

 = {i} × ((a * mλj) * (b * mµk * c)) × {υ} 

 = {i} × ((a * mλj * b) * mµk * c)) × {υ} 

 
= {i} × (

* *jt a m bλ∈
∪  t * mµk * c) × {υ} 

 
= 

* *jt a m bλ∈
∪  {i} × (t * mµk * c) × {υ} 

 
= 

* *jt a m bλ∈
∪  (i, t, µ) ○ (k, c, υ) 

 
= (

* *jt a m bλ∈
∪  (i, t, µ)) ○ (k, c, υ) 

 = ({i} × (a * mλj * b) × {µ}) ○ (k, c, υ) 

 = ((i, a, λ) ○ ((j, b, µ)) ○ (k, c, υ) 

Therefore, MGH (H; I, Λ, M) is a semihypergroup. 

Theorem 2.2. For every element (i, a, λ) ∈  MGH (H; I, Λ, M), there is a unique non-empty subset E (i, a, λ) ⊆  MGH (H; I, 

Λ, M), such that for every element (j, b, µ) of E (i, a, λ), implies 

(i, a, λ) ∈  [(i, a, λ) ○ (j, b, µ)] ∩ [(j, b, µ) ○ (i, a, λ)]. Moreover, 

E (i, a, λ) = {i} × [(mλi 
-1

* a
-1

 * a) ∩ (a * a
-1

 * mλi 
-1

)] × {λ}. 

Proof. Since mλi is an element of polygroup H, there exist mλi
-1

, such that 

e ∈  [(mλi 
-1

* mλi) ∩ (mλi * mλi 
-1

)]. Now, we have: 

(i, a, λ) ○ (i, mλi 
-1

, λ) = {i} × (a * mλi * mλi 
-1

) × {λ} 

 ⊇  {i} × (a * e) × {λ} = {i} × {a} × {λ} = {(i, a, λ)}. 

Also {(i, a, λ)} = {i} × {a} × {λ} = {i} × (e * a) × {λ} 

 ⊆ {i} × (mλi 
-1

 * mλi * a) × {λ} 

 = (i, mλi 
-1

, λ) ○ (i, a, λ). 

Therefore, (i, mλi 
-1

, λ) is an element of E (i, a, λ). 

If (j, b, µ) be an arbitrary element of E (i, a, λ), then we have: 

(i, a, λ) ∈  [(i, a, λ) ○ (j, b, µ)] ∩ [(j, b, µ) ○ (i, a, λ)] 

 = [{i} × (a * mλj * b) × {µ}] ∩ [{j} × (b * mµi * a) × {λ}]. 
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Therefore, j = i and µ = λ and a ∈  (a * mλi * b) ∩ (b * mλi * a). Since, 

a ∈  (a * mλi * b) ⇔  b ∈  (a * mλi)
 -1

 * a = mλi
 -1

 * a
-1

 * a, 

a ∈  (b * mλi * a) ⇔  b ∈  a * (mλi * a)
 -1

 = a * a
-1

 * mλi
 -1

, 

therefore, b ∈  [(mλi 
-1

* a
-1

 * a) ∩ (a * a
-1

 * mλi 
-1

)]. 

Conversely if b ∈  [(mλi 
-1

* a
-1

 * a) ∩ (a * a
-1

 * mλi 
-1

)], then (i, b, λ) is an element of E (i, a, λ) and the proof is complete. 

Theorem 2.3. For every element (i, a, λ) ∈  MGH (H; I, Λ, M), there is a non-empty subset I (i, a, λ) ∈  MGH (H; I, Λ, M), 

such that for all β in I (i, a, λ) 

[(i, a, λ) ○ β ] ∩ [ β ○ (i, a, λ)] ≈  E (i, a, λ). 

Proof. Assume that c = mλi, by choosing I (i, a, λ) = {i} × (c
-1

 * a
-1

 * c
-1

) × {λ}. which, it is a non-empty subset of MGH 
(H; I, Λ, M), we show that it satisfies the condition of Theorem. Since H is a polygroup, hence, {a} = a * e and e ∈  c * c

-1
 and 

e ∈  a * a
-1

 then we have: 

e ∈  a * a
-1

 = (a * e) * a
-1

= (a * e * a
-1

) ⊆  (a * (c * c
-1)

 * a
-1

)= (a * c * c
-1 

* a
-1

). 

Then c
-1∈

 {c
-1

} = e * c
-1 ⊆

(a * c * c
-1

 * a
-1

) * c
-1 

= (a * c) * (c
-1 

* a
-1

 * c
-1)

. 

Similarly, 

e ∈  a
-1

 * a = (a
-1

 * e) * a = (a
-1

 * e * a) ⊆  (a
-1

 * (c
-1

 * c
)
 * a)= (a

-1
 * c

-1
 * c

 
* a). 

Then c
-1∈

 {c
-1

} = c
-1

* e ⊆  c
-1 

* (a
-1

 * c
-1

 * c
 
* a) = (c

-1 
* a

-1
 * c

-1
) * c

 
* a. 

Also, c
-1∈

 (c
-1 

* a
-1

 * a) ∩ (a * a
-1

 * c
-1

), hence, c
-1

 is an element of the following set 

[(a * c) * (c
-1 

* a
-1

 * c
-1)

] ∩ [(c
-1 

* a
-1

 * c
-1

) * c
 
* a] ∩ [(c

-1 
* a

-1
 * a)] ∩ [(a * a

-1
 * c

-1
)], 

then, 

(i, mλi
-1

, λ) ∈  [(i, a, λ) ○ I (i, a, λ)] ∩ [I (i, a, λ) ○ (i, a, λ)] ∩ E (i, a, λ). 

Let β =(i, x, λ) ∈  I (i, a, λ), then x∈  c
-1 

* a
-1

 * c
-1

, hence c
-1 ∈  a * c * x ∩ x * c

 
* a, therefore c

-1
 is an element of the set  

[a * c * x] ∩ [x * c
 
* a] ∩ [(c

-1 
* a

-1
 * a)] ∩ [(a * a

-1
 * c

-1
)], then 

(i, mλi
-1

, λ) ∈  [(i, a, λ) ○ (i, x, λ)] ∩ [(i, x, λ)  ○ (i, a, λ)] ∩ E (i, a, λ). 

and the proof is complete. 

Theorem 2.1, 2.2 and 2.3 guidance us to follows for 

definition of a generalization of Molaei’s generalized group. 

Definition 2.1. A semihypergroup (H, ○) is called Molaei’s 

generalized hypergroup, if it satisfies in the following 

conditions: 

(MGH1) h∀ ∈  H, !∃  E ( )h ⊆ H, such that for every 

element α ∈  E ( )h , [h h∈ � α ] [∩ α ],h�  

(MGH1) h∀ ∈  H, ∃  I ( )h ⊆ H, such that for every 

element β ∈  I ( )h , [h �  β ] [∩  β ]h ≈� E ( )h , 

(The symbole !∃  means there is a unique.) 

Example 2.1. If < H, *, e, 
-1 

> be a polygroup and let I, Λ 

be non-empty sets and M be a map from Λ × I to H by M (λ, 

i) = mλi. Then, by use Theorems 2.1, 2.2 and 2.3, MGH (H; 

I, Λ, M):= I × H × Λ, with hyperoperation “ ” is a Molaei’s 

generalized hypergroup. 

Example 2.2. Every polygroup is a Molaei’s generalized 

hypergroup. If < H, *, e, 
-1 

> be a polygroup, it is 

semihypergroup and for every element h H∈ ,  

E 1 1( ) ( * ) ( * )h h h h h− −= ∩  and I { }1( )h h−= . 

Example 2.3. Every Molaei’s generalized group is a 

Molaei’s generalized hypergroup. If G be a Molaei’s 

generalized group, we consider the hyperoperation x 

*y={xy}, then (G, *) is a semihypergroup and for every h ∈
G,  

E { }( ) ( )h e h=  is unique and I { }1( )h h−= . 

3. Conclusion 

This paper deal with one of the newest construction of a 

generalization of hypergroups. We changed the group to the 

polygroup in the structure of Rees matrix semigroup and we 

obtained a new construction. By using this construction we 

defined “Molaei’s generalized hypergroup” and we gave 

some examples. 
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