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Abstract: In this paper, we firstly discuss the basic properties of the sub differential of fuzzy mapping and get some related 

conclusions. Secondly, we establish a variational principle of fuzzy mapping by establishing the concept of gauge fuzzy 

mapping. Then we prove the approximation sun rule of fuzzy mapping in sub-differential as the application of that principles. 
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1. Introduction 

In 1972, Chang and Zadeh [1] introduced the concept of 

fuzzy numbers with the consideration of the properties of 

probability functions. Since then the fuzzy numbers and 

fuzzy mapping of the value is fuzzy number have been 

extensively studied by many authors. Researchers have 

begun to study upon the relation equations of fuzzy 

numbers, the differential and measurability and integral of 

fuzzy mappings, and other theories in relation to fuzzy 

numbers. Especially in the differentiability of fuzzy 

mapping and its application in fuzzy programming, a series 

of important achievements have been reached [2, 3, 4]. 

However, not all of the fuzzy mapping is differentiable. So 

we should also study those fuzzy mappings whose analytic 

properties are weaker than differentiability. Concept of 

sub-differential of convex fuzzy mapping is introduced in [5, 

6]. Its related properties and application in convex 

programming is discussed and some important conclusions 

are obtained. 

In [7, 8] we extend the concept of sub-differential of 

convex fuzzy mapping given in [5, 6], establish the concept 

of sub-differential of normal fuzzy mapping and study the 

existence problem of the convex extension of fuzzy mapping. 

New study method is provided to search on fuzzy 

programming problems. By using the study methods and 

techniques of non-smooth analysis and set valued analysis [9, 

10, 11], we discuss the basic properties of sub-differential of 

fuzzy mapping [6] and try to establish a variational principle 

of fuzzy mapping. Finally we discuss the application of it. 

2. Prerequisite 

Let R be the real numbers field A fuzzy set  on R is 

called a fuzzy number, if it has the following properties:  

(I) u is upper semi-continuous; 

(II) u is normal, i.e., there exists an 0x R∈  such that 

( )0 1u x = ; 

(III) u is convex, i.e., 

( )( ) ( ) ( )( )1 min ,u x y u x u yλ λ+ − ≥  

Whenever [ ], , 0,1x y R r∈ ∈ . 

(IV) 0[ ] { ( ) 0}u x u x= >  is a compact set. 

Let F denote the family of all fuzzy numbers and is 

called fuzzy number space. See the concepts and its 

properties related to fuzzy number in [4]. For any r R∈ , we 

define a fuzzy number rɶ by 

( ) 1,

0,

t r
r t

t r

=
=  ≠

ɶ  

for any t R∈ . Let { }R r r R= ∈ɶ ɶ , then R ⊂ɶ F . For

u
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[ ]0,1u α∈ ∈,F , the r-level set of fuzzy number u  is a 

nonempty bounded closed interval, which is denoted as 

. 

For ,u v ∈F , we say that u v≤  if and only if 

( ) ( )u vα α∗ ∗≤  and ( ) ( )u vα α∗ ∗≤  

for any [ ]0,1α ∈ . 

If 0u ≥ , then u  is called a nonnegative fuzzy number, 

and +F  denote the family of all nonnegative numbers. 

For ,u v ∈F and r R∈ , we define the addition u v+  

and scalar multiplication ru  as follows: 

[ ]( ) ( ) ( ) ( ) ( )* *
* * ,u v u v u vα α α α α + = + +

  , 

for any [ ]0,1α ∈ . 

If 0r ≥ , 

[ ]( ) ( ) ( )*
* ,ru ru ruα α α =

  , 

for any [ ]0,1α ∈ . 

[ ]( ) ( ) ( )*
*,ru ru ruα α α =

  , 

for any [ ]0,1α ∈ . 

For ( 1, 2, , )i i nξ = ∈⋯ F , we call 

 

is an -dimensional fuzzy vector. The set of all 

-dimensional fuzzy vectors is denoted by (R)n
F . For  

( )
( )

1 2

1 2

, , , (R)

, , , R

n
n

n
nx x x x

ξ ξ ξ ξ= ⋅⋅ ⋅ ∈

= ⋅⋅ ⋅ ∈

F

, 

the inner product of and  is defined as 

( )
( )

1 2

1 2

, , , (R)

, , , R

ξ ξ ξ ξ= ⋅⋅⋅ ∈

= ⋅⋅⋅ ∈

n

n

n

nx x x x

F
, 

the inner product of  and  is defined as 

. 

If for , ∈u v F , there exists ∈w F  such that u v w= + , 

we say that the H-difference of u  and v  exist and denote 
u v w− = .  

It is obvious that if H-difference u v− exists, then 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* **

* * *

u v u v

u v u v

α α α

α α α

− = −

− = −
 

Definition 2.1 [12]. Let S be a subset of F . If there 

exists 0u ∈F  such that 0u u≥  for any u S∈ , then 0u  is 

called the lower bounded of S . 

If 0u is a lower bounded of S , and satisfies that for any 

lower bound u′ of S 0u u′≤ . Then 0u  is called the infimum 

of S  and denote as 0inf S u= . 

A upper bound and the supermun of S  are defined 

similarly. S  is said to be order bounded if it is both bounded 

from above and bounded from below. 

Let M  be a nonempty sub set of n-dimensional 

Euclidean space nR . We call the mapping from M toF a 

fuzzy mapping (fuzzy number value function), and denote as

:F M → F . For any [ ]0,1α ∈ , denote 

( ) ( ) ( )( ) ( )( )*
* ,F x F x F xα α α   =    , 

where ( )( )*F x α  and ( )( )*F x α  are real value function 

defined in M . 

Definition 2.2 [13] Let :F M → F be a fuzzy mapping, 

0x M∈ . F is lower semi-continuous at a point 0x  If for 

any 0ε > , there exists 0δ >  such that  

( ) ( )0F x F x ε≤ + ɶ . 

For all x M∈ and 0x x δ− < . Then we say that F is 

lower semi-continuous at each point of M . 

Theorem 2.1. Let :F M → F  be a fuzzy mapping. If F

is a lower semi-continuous, u ∈F , then  

( ) ( ){ }uA F x M F x u= ∈ ≤  

is closed set in nR . 

Proof. for u ∈F , we have 

( )F x u≤  

( ) ( ) ( )**
F x uα α⇔ ≤ and ( ) ( ) ( )* *F x uα α≤  

for any [ ]0,1α ∈ . 

Therefore, 

( ) ( ) ( ) ( ) [ ]{ }**
, 0,1uA F x M F x uα α α= ∈ ≤ ∈  

( ) ( ) ( ) [ ]{ }* * , 0,1x M F x uα α α∈ ≤ ∈∩  

On the other hand, by :F M → F is semi-continuity, we 

know that for any [ ]0,1α ∈ , both ( ) ( )
*

F x α  and 

( ) ( )*
F x α  are lower semi-continuous real valued functions 

[ ] ( ) ( )*

* ,u u u
α α α =  

),,( 1 nξξξ ⋯=

n n

ξ x

ξ x

1 1 2 2, n nx x x xξ ξ ξ ξ= + + ⋅⋅⋅+
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defined in M . 

So for any [ ]0,1α ∈ , we have 

( ) ( ) ( ){ }**
α α∈ ≤x M F x u  

and 

( ) ( ) ( ){ }* *α α∈ ≤x M F x u
 

are closed set. Hence ( )uA F is closed set. 

Definition 2.3 [6] . Let : →F M F  be a fuzzy mapping, 

∈x M . The sub-differential o F  f at  is defined as 

( )

{ (R), ( ) ( ) , , }ξ ξ ξ
∂

= ∈ ≥ + − ∀ ∈n

F x

F z F x z x z MF
 

If ( )∂ ≠ ∅F x , then F  is called sub-differentiable at 

. 

If ∂F is a single point set { }ξ , then F is called 

differentiable at x , and denote as ( )ξ = ∇F x . 

Theorem 2.2 . Let ( ), : 1, 2→ =iF F M iF be fuzzy 

mappings, ∈x M , then 

(I) ( )( ) ( ) ( )0λ λ λ∂ = >F x F x  

(II) ( )( ) ( ) ( )1 2 1 2∂ + ⊃ ∂ + ∂F F x F x x . 

Proof. (I) For 

( ) ( )( )1 2, , ,ξ λ= ∈ ∂⋯ nu u u F x , 

by Definition 2.3, we have 

( ) ( ) ,λ λ ξ≥ + −F z F x z x  

for any ∈z M . 

Therefore 

( ) ( ) 1
,ξ

λ
≥ + −F z F x z x . 

So 

( )1 ξ
λ

∈ ∂F x , 

i.e., ( )ξ λ∈ ∂F x . 

Therefore 

( ) ( ) ( )λ λ∂ ⊂ ∂F x F x . 

We can similarly obtain 

( ) ( )( )λ λ∂ ⊂ ∂F x F x . 

So 

( ) ( )( )λ λ∂ = ∂F x F x . 

(II) Let 

( ) ( ) ( )1 2 1 2, , ,ξ = ∈∂ + ∂⋯ nu u u F x F x
, 

then there exist ( )1 1 ,ξ ∈ ∂F x ( )2 2ξ ∈∂F x  such that  

1 2
ξ ξ ξ= +

 

and by Definition 2.3，we have 

( ) ( )1 1 1
,ξ≥ + −F z F x z x            (1) 

( ) ( )2 2 2
,ξ≥ + −F z F x z x            (2) 

for any ∈z M . 

According to (1)+(2)，we have 

( )( ) ( )( )1 2 1 2 1 2
,ξ ξ+ ≥ + + + −F F z F F x z x . 

So 

( )( )1 2 1 2
ξ ξ ξ= + ∈∂ +F F x , 

i.e., 

( ) ( ) ( )( )1 2 1 2
∂ + ∂ ⊂ ∂ +F x F x F F x . 

We can easily obtain the following Corollary 2.1 according 

to Theorem 2.2. 

Corollary 2.1. Let ( ): 1,2→ =iF M iF be fuzzy mapping, 

and 

( ) ( )( )1 2
0λ λ= >F x F x  

for any ∈x M , then 

( ) ( ) ( )( )1 2 1 2
∂ + ∂ = ∂ +F x F x F F x  

Theorem 2.3. Let : →F M F be fuzzy mapping. If ( )0
F x

is the minimum of F in M , then  

( ) ( )( )0
ˆ ˆ ˆ0 0 0,0, ,0,∈ ∂ = ⋯F x . 

Proof. Let ( )0
F x be the minimum of F in M , then for any

∈x M , 

( ) ( )0
≥F z F x . 

Therefore, for any ∈z M  and ( )ˆ ˆ ˆ0 0,0, ,0,= ⋯ , we have 

( ) ( )0 0
0,≥ + −F z F x z x  

i.e., ( )0
0 ∈∂F x . 

x

x
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3. Fuzzy Variational Principles 

X stands for nR  or a sub set of nR  in this section. 

Definition 3.1. Let ( ),X d be complete metric space, 

continuous mapping : X Xρ +× → F is called a gauge fuzzy 

mapping. If it has the following properties: 

(I) ( ) ˆ, 0,x x x Xρ = ∀ ∈ ; 

(II) For arbitrary 0ε > , there exists 0δ > , such that  

( ),d y z ε< , 

for any , ∈y z X  when ( ) ˆ,ρ δ≤y z ; 

(III) ( )X Xρ × is the totally ordered sub set of +F .  

Theorem 3.1 (Variational Principles of Fuzzy Mapping). 

Let ( ),X d be a complete metric space. If fuzzy mapping

:F M → F  satisfy conditions (I)-(III): 

(I) ( )F X is a totally ordered sub set of F with a 

H-difference; 

(II) F  is lower semi-continuous and ; 

(III) ρ is a gauge fuzzy mapping, { }
0n n

δ ∞
= is a positive 

sequence of points.  

Then for any 0ε >  and z X∈ , when  

( ) ˆinf ε≤ +
X

F z F , 

there exists a sequence of points ( 1,2,...)∈ =
n

x X n  such 

that ( )nx x n→ → ∞  and 

(I) ( ) 0,z yρ ε σ≤ ɶ  

when ( ) ˆinf ε≤ +
X

F z F ; 

(II) ( ) ( ) ( )
0

,σ ρ
∞

=
+ ≤∑ n n

n

F y y x F z  

when ( ) ˆinf ε≤ +
X

F z F ; 

(III) ( ) ( ) ( ) ( )
0 0

, ,σ ρ σ ρ
∞ ∞

= =
+ ≥ +∑ ∑n n n n

n n

F x x x F y y x  

for any ∈x X . 

Proof. First we build a sequence of points { }nx which 

satisfies ( 1, 2,...)nx X n∈ =  and ( )nx x n→ → ∞ . 

Let 

0 ,x z=  

( ) ( ) ( ){ }0 0 0 0,S x X F x x x F xσ ρ= ∈ + ≤      (3) 

Because F and ( )0, xρ ⋅ are lower semi-continuous, 0S is 

closed set according to Theorem 2.1. And for any 0x S∈ , we 

have  

( ) ( ) ( )
( )

0 0 0,

ˆinf
X

x x F x F x

F z F

σ ρ

ε

≤ −

≤ − ≤            (4) 

Find an 1 0x S∈ , which allows 

( ) ( )1 0 1 0,F x x xδ ρ+  

( ) ( )
0

0 0 1 0
ˆinf , 2

x S
F x x xσ ρ σ ε σ

∈
 ≤ + +  .       (5) 

Let 

( ) ( )

( ) ( )

1

1 0 0

1 0 1 0

,

,

k k

k

F x x x
S x S

F x x x

σ ρ

ρ
=

 
 + = ∈ 
 ≤ +  

∑
       (6) 

Assuming that we define 1nS −  and 1n nx S −∈ , which 

allow 

( ) ( )
1

0

,

n

n k n k

k

F x x xσ ρ
−

=

+∑  

( ) ( )
1

1

0

0

ˆinf , 2
n

n
n

k k n
x S

k

F x x xσ ρ εσ σ
−

−

∈
=

 
≤ + + 

  
∑    (7) 

Let 

( ) ( )

( ) ( )

0
1 1

0

,

,

n

k k

k
n n n

n k n k

k

F x x x

S x S

F x x x

σ ρ

σ ρ

=
− −

=

 
 +
  = ∈ 
 ≤ + 
  

∑

∑
  (8) 

We can obtain that { }
0n n

S
∞

=  is a list of nonempty closed 

set according to Theorem 2.1. So by (7) and (8) we have: 

( )

( ) ( )
1

0

,

,

n n

n

n k n k

k

x x

F x x x

σ ρ

σ ρ
−

=

 
≤ + 
  

∑
 

( ) ( )
1

0

,

n

k k

k

F x x xσ ρ
−

=

 
− + 
  

∑  

( ) ( )
1

0

,

n

n k n k

k

F x x xσ ρ
−

=

 
≤ + 
  

∑  

( ) ( )
1

1

0

inf ,
n

n

k k
x S

k

F x x xσ ρ
−

−

∈
=

 
− + 

  
∑  

( )inf
X

F F X∈
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0
ˆ 2n

nεσ σ≤ . 

Therefore, for any ( )1,2,nx S n∈ = ⋯ , we have 

( ) 0
ˆ, 2n

nx xρ ε σ≤                (9) 

Since ρ  is a fuzzy gauge mapping, so by (9) we have 

( ) ( ), 0nd x x n→ → ∞
. 

On the other hand, by  

1n nS S −⊂  and ( ) 0ndiam S → ,  

there exists an unique  

0
n

n

y S
∞

=
∈ ∩ , 

which allows a sequence { }nx converge to y X∈ . 

Next we will prove that{ }nx and y satisfy the conclusion 

(I)- (III) of Theorem 3.1. 

(I) by (4) and 

0
n

n

y S
∞

=
∈ ∩ , 

it’s obviously that ( ) 0
ˆ,y zρ ε σ≤ ; 

(II) by (3) ,(8) and 

0
n

n

y S
∞

=
∈ ∩ , 

for any natural number q m≥ , we have 

( ) ( ) ( )
1

0

0

,

m

m k m k

k

F x F x x xσ ρ
−

=

≥ +∑  

( ) ( )
1

0

,

q

q k q k

k

F x x xσ ρ
−

=

≥ +∑  

( ) ( )
0

,

q

k k

k

F y y xσ ρ
=

≥ +∑  

Therefore 

( ) ( ) ( )0

0

,

q

k k

k

F x F y y xσ ρ
=

≥ +∑ .     (10) 

Let q → +∞ , according to (10), we have 

( ) ( ) ( )
0

,k k

k

F z F y y xσ ρ
+∞

=

≥ +∑  

(III) Since for any x y≠ , 
0

n
n

x S
∞

=
∉ ∩ . There exists natural 

number m which allows mx S∉ . So according to (8) we 

have 

( ) ( )

( ) ( )

0

0

,

,

k k

k

m

k k

k

F x x x

F x x x

σ ρ

σ ρ

∞

=

=

+

≥ +

∑

∑
  

( ) ( )( )
1

0

,

m

m k m k

k

F x x x mσ ρ
−

=

≥ + → ∞∑ 令 .    (11) 

Le t m → +∞ , according to (11), we have 

( ) ( )
0

,k k

k

F x x xσ ρ
∞

=

+∑ ( ) ( )
0

,k k

k

F y y xσ ρ
∞

=

≥ +∑
. 

Corollary 3.1. Let : nF R → F be a fuzzy lower 

semi-continuous bounded mapping. If F satisfy conditions 

(1)-(3): 

(I) ( )nF R is the totally ordered sub set of F  with 

H-difference; 

(II) ( )inf
n

n

R
F F R∈ and 0, 1pλ > ≥ . 

Then for any 0ε > and nz R∈ , there exists
ny R∈  which 

allows: 

(I) λ− ≤z y ; 

(II) ( ) ( )≤F y F z ; 

(III) ( ) ε̂
λ

+ − p

p
F x x z  

( ) ˆ
,

ε
λ

≥ + − ∀ ∈p n

p
F y y z x R

. 

When ( ) ˆinf ε≤ +
nR

F z F . 

Proof. Let 

( ) ˆ,
p px y x zρ ε λ= − , 

then 

: n nR Rρ +× → F  

is a gauge fuzzy mapping. 

Take  

( )1
0,1, 2

2
n n

nσ = = ⋯ , 

then we can easily prove the conclusion of Corollary 3.1 

according to Theorem 3.1.  
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4. Fuzzy Approximate Sum Rule 

Lemma 4.1. Let 

, : →n
F G R F  

be lower semi-continuous fuzzy mapping. If ( )nF R is 

totally ordered sub set of F , ( ) ⊂ ɶG M R  and G  is 

differentiable at point 0x , we have    

( )( ) ( ) ( )0 0 0F G x F x G x∂ + = ∂ + ∇ .         (12) 

Proof. According to Theorem 2.2 (II), we have 

( ) ( ) ( )( )0 0 0F x G x F G x∂ + ∇ ⊂ ∂ + . 

So we can prove (12) by proving  

( )( ) ( ) ( )0 0 0F G x F x G x∂ + ⊂ ∂ + ∇ . 

Let 

( ) ( )( )1 2 0, , , nu u u F G xξ = ∈ ∂ +⋯ ,  

then for any nx R∈ , we have 

( )( ) ( )( )0 0,F G x F G x z xξ+ ≥ + + − . 

Therefore for any [ ]0,1α ∈ , we have 

( ) ( ) ( )
*

F G z α+  

( )( ) ( ) ( )0 * 0*
,F G x z xα ξ α≥ + + − , 

( ) ( ) ( )*
F G z α+  

( )( ) ( ) ( )* *
0 0,F G x z xα ξ α≥ + + − . 

According to the basic properties of the sub-differential of 

real valued functions, we have 

( ) ( )( ) ( )* 0 *
F G xξ α α∈ ∂ +  

( ) ( ) ( ) ( )0 0* *
F x G xα α= ∂ + ∇ , 

( ) ( )( ) ( )**
0F G xξ α α∈ ∂ +

 

( ) ( ) ( ) ( )* *

0 0F x G xα α= ∂ + ∇
. 

So there exists  

( ) ( ) ( )
( ) ( ) ( )

1* 0 *

2* 0 *

F x

G x

ξ α α

ξ α α

∈ ∂

∈∇
              (13) 

( ) ( ) ( )
( ) ( ) ( )

**
1 0

**
2 0

F x

G x

ξ α α

ξ α α

∈ ∂

∈∇
               (14) 

Such that  

( ) ( ) ( )
( ) ( ) ( )

* 1* 2*

* * *
1 2

ξ α ξ α ξ α

ξ α ξ α ξ α

= +

= +
            (15) 

On the other hand, by ( )G M R⊂ ɶ and G is differentiable 

at 0x , we have 

( ) ( ) ( ) ( )*

0 0*
G x G xα α∇ = ∇  

and 

( ) { }0 2G x ξ∇ = . 

Therefore for any [ ]0,1α ∈ , we have 

( ) ( )2* 2
nRξ α ξ α∗= ∈ . 

( )2*ξ α and ( )2ξ α∗
determine a same fuzzy vector 2ξ . So 

according to (15), ( )1ξ α∗ and ( )*
1ξ α  also determine a fuzzy 

vector ( )1
n Rξ ∈F for any [ ]0,1α ∈ . And  

1 2ξ ξ ξ= + . 

By (13) and (14), for any [ ]0,1α ∈ we have 

( ) ( ) ( ) ( ) ( )0 1* 0* *
,F z F x z xα α ξ α≥ + − , 

( ) ( ) ( ) ( ) ( )** *
0 1 0,F z F x z xα α ξ α≥ + − . 

Therefore, 

( ) ( )0 1 0,F z F x z xξ≥ + − , 

i.e.  

( )1 0F xξ ∈∂ . 

So 

( ) ( )1 2 0 0F x G xξ ξ ξ= + ∈ ∂ + ∇ . 

Theorem 4.2 (Fuzzy Approximate sum rule). Let  

( ): 1, 2, ,n
jF R j m→ = ⋯F  

be lower semi-continuous bounded fuzzy mappings. If 

( )1,2, ,jF j m= ⋯ satisfy conditions (I)-(II): 

(I) ( )n
jF R ( )1,2, ,j m= ⋯ is totally ordered subset ofF

with H-difference; 
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(II) ( )( )inf 1, 2, ,
n

n
j j

R
F F R j m∈ = ⋯ . 

Then for any 0ε >  and ∈ n

jz R , there exists ∈ n

jy R

and ( )∈ ∂j j ju F y , which allow: 

1

ˆ ˆ0

m

j

j

u Bε
=

∈ +∑ , 

when ( ) ˆinf ε≤ +
nj j

R
F z F , where B is a unit ball in

nR . 

Proof. Let 

( ): 1, 2, ,n
jF R j m→ = ⋯F  

be fuzzy mapping which satisfies the conditions of Theorem 

4.2. Then when 

2 , 0, n
jm z Rλ ε> > ∈  

and 

( ) ˆinf
nj

R
F z F ε≤ + , 

according to 3.1, there exists ( )1,2, ,n
iy R j m∈ = ⋯  which 

allows 

j jz y λ− <  

and  

( ) 2 2ˆ
j j jF x x z ε λ+ −  

obtain the minimum at . So by Theorem 2.3, we 

have 

( )2 2ˆ ˆ0 j j j jF x z yε λ ∈ ∂ + − 
 

. 

On the other hand, according to Lemma 4.1, we have: 

( ) ( )
( )

22

2 2

ˆ

ˆ

j j j j

j j j j

F x z y

F y x z

ε λ

ε λ

 ∂ + − 
 

 = ∂ + ∇ − 
 

 

( ) ( )( )( )2ˆ2 1,2, ,j j j jF y x z j mε λ= ∂ + − = ⋯ . 

According to 

( )

( )

2
1

2
1

2

2

2

2

2
1

m

j j

j

m

j j

j

y z

y z

m

m

λ

λ

λ
λ

λ

=

=

−

≤ −

≤ ⋅

= <

∑

∑
 

we can obtain 

( )2
1

2
m

j j

j

y z B
λ=

− ∈∑ . 

Therefore 

( )
1

ˆ ˆ0

m

j j

j

F y Bε
=

∈ ∂ +∑ . 

So there exists ( )j j ju F y∈∂ ( )1,2, ,j m= ⋯ , such that 

1

ˆ ˆ0

m

j

j

u Bε
=

∈ +∑ . 

5. Conclusion 

We are inspired by non-smooth variation principles and try 

to introduce the skill of non-smooth variation into fuzzy 

analysis. The basic properties of sub-differential of fuzzy 

mapping is discussed. A variation principle of fuzzy mapping 

is proved and applied into the variation problem of fuzzy 

mappings. Its approximation and rules in sub-differential are 

given. Studying method in this paper and the conclusion we 

get may extend a new searching direction and it is hopeful to 

obtain a new series of conclusion. 
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