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Abstract: This paper deals with a Maximum likelihood method to fit a three-parameter gamma distribution to data from an 

independent and identically distributed scheme of sampling. The likelihood hinges on the joint distribution of the n − 1 largest 

order statistics and its maximization is done by resorting to a MM-algorithm. Monte Carlo simulations is performed in order to 

examine the behavior of the bias and the root mean square error of the proposed estimator. The performances of the proposed 

method is compared to those of two alternatives methods recently available in the literature: the location and scale parameters 

free maximum likelihood estimators (LSPF-MLE) of Nagatsuka & al. (2014), and Bayesian Likelihood (BL) method of Hall 

and Wang (2005). As in several papers on the three-parameter gamma fitting (Cohen and Whitten (1986), Tzavelas (2009), 

Nagatsuka & al. (2014), etc.), the classical dataset on the maximum flood levels data in millions of cubic feet per second for 

the Susquehanna River at Harrisburg, Pennsylvania, over 20 four-year periods from 1890–1969 from Antle and Dumonceaux’s 

paper (1973) is consider to illustrate the proposed method. 

Keywords: Estimation, Likelihood, MM-algorithm, Order Statistics, Pearson Type III Model,  

Three-Parameter Gamma Model, Left Censoring 

 

1. Introduction 

In many fields of science and technology one must carry 

out the statistical analysis of skewed numerical datasets. In 

the field of reliability (lifetime study) or hydrology (annual 

maximum flows or streamflows study) (refer to Bobee and 

Ashkar (1991), [1] for example), it is common to deal with 

skewed data made of recorded values that cannot fail below a 

threshold. One of the statistical model appropriate for 

statistical analysis of such dataset is the three-parameter 

gamma model of probability distributions. A probability 

distribution that obeys to the three-parameter gamma model 

is identified by a vector � ∈ ℝ�, � = ��, 	, 
� and is defined 

by a probability density function (pdf) f (with respect to the 

Lebesgue’s measure) as follows: 

��
, �� = �
 − 
����	����� �
� − �
 − 
�	 1��,������ 
The parameter ν ∈ ℝ denotes the threshold value and is called 

the location parameter; β > 0 is the scale parameter and λ > 0 

is the shape parameter. Let � ⊂ ℝ� be the parameter space. 

If 0< λ≤1, the distribution is reverse ‘‘J’’ shaped, whereas if 

λ > 1, the distribution is bell-shaped and its mode is equal to 

ν + (λ − 1)β [2] 

It comes from the form of the probability density function 

that the support of a three-parameter gamma distribution is 

limited on the left by the threshold parameter ν. Therefore if 

the value of the threshold ν is unknown, the statistical model 

that one deals with is no more regular and several undesirable 
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situations can then arise when the maximum likelihood 

method is used to fit the model to data. Let’s notice first that 

the likelihood is unbounded for values of the shape parameter 

λ smaller than 1 as ν is unknown and goes towards the 

observed sample value x. Non-existence of a global optimum 

of the log-likelihood in a certain range of the parameters’ 

values, convergence problems and large variability of the 

parameters’ estimates are main limitations with the use of the 

maximum likelihood method. The non-regular behavior of 

the maximum likelihood method for the three-parameter 

gamma model has been addressed from theoretical statistics 

point of view in several works and one can refer to the paper 

by Nagatsuka & al. (2014), [3], for a concise and clear 

overview of the main results on this topic.

Several works including Bowman and Shenton (2002), 

Cheng and Iles (1987, 1990), Smith (1985), Cohen and 

Whitten (1982) [4, 5, 6, 7, 2] have aimed to provide reliable 

estimates of θ for the three-parameter gamma distribution. In 

the recent past some studies were carried out to provide the 

conditions which the data must check to make it possible to 

overcome some of the difficulties encountered in the use of 

the maximum likelihood method. As an example, Tzavelas 

(2008) [8] provides with conditions on the data under which 

the root of the score equations exists. These conditions 

hinges on the third central empirical moment µ̂3. If µ̂3<0, the 

score function has at least one root. By cons, µ̂3>0 yields two 

possibilities: either the score function has no root or it has at 

least two roots. In spite of a lack of sharpness, these results 

are of a practical range insofar as they are related to the 

dataset. Others works including Balakishnan (2000), Hall and 

Wang (2005), Tzavelas (2009), Nagatsuka and al. (2014), [9, 

10, 11, 3], have developed methods that aim to provide with 

reliable estimators as those based on complete and censored 

samples and order statistics. 

In this article, a new estimation method using the 

likelihood based on the n − 1 largest values of a sample of 

size n from a three-parameter Gamma distribution is develop. 

An MM algorithm [12] is providing to determine Maximum 

Likelihood Estimates (MLEs) of θ. The performance of the 

methodology developed is assessed by a simulation study and 

illustrated with a numerical real-life example. 

The rest of the paper is organized as follows. The next 

section presents the likelihood function of the parameters 

vector θ and the third section deals with a MM approach for 

its maximization. The results of a Monte-Carlo study carried 

out for the evaluation of the performance of the estimator of 

θ is presented in the fourth section. The last section is 

devoted to a discussion. 

2. Model Fitting Method 

2.1. An Order Statistics Based Likelihood 

Given an independent and identically distributed (i.i.d) 

sequence �������: , let F(x∣θ) be the cumulative distribution 

function (cdf) and denotes (Xi:n)i=1:n the associated 

sequence of order statistics. 

!�
, �� = " ��� �#|��%# 
The joint density of the sequence (Xi:n)i=2:n is therefore 

defined by 

��&':(�')*:(�#, ��= +! !�#-|��.� 
��- �#�|��1�/0*1021...10(�#� 

where �#�, #-, . . . , # � is a strictly increasing sequence. 

Let �
�����:  denote a sample of size n from a three-

parameter gamma distribution with unknown parameters 

vector θ and (xi:n)i=1:n is the non-decreasing sorted values. 

The likelihood function based on last n − 1 order statistics is 

defined as follow: 

4��|
�: , 5 = 2: +� = +! !�
-: |��.� 
��- �
�: |�� 

Taking the logarithm of both sides leads to the following 

log-likelihood function for left censored data 7��|
-: , ⋯ , 
 : � 7��|
-: , ⋯ , 
 : � = 79:�+!� − +�79:�	� − +79:;����<
+ �>79: 

?�- �
?: − 
� 
−>79: 

?�- �
?: − 
� − 1	>�
?: − 
� 
?�- + �79:�
-: − 
�

+ 79:" #����
@ �
� − 1	 �
-: − 
�#%# 

2.2. MM-algorithm Approach to the Maximization of an 

Objective Function 

The acronym MM stands for Majorization-Minorization or 

Minorization-Maximization algorithm (Lange (2000, 2004, 
2013), [12, 13, 14]). Now, let us focus on Minorization-

Maximization version of the MM approach to computing the 

argument value where an objective function reaches a local 

maximum. Let’s consider the problem of maximization of a 

function Ψ whose domain is X. This procedure relies on the 

concept of surrogate function, which is maximized instead of 

the objective function at each iteration of the algorithm. The 

starting point of a MM-algorithm consists looking for a 

function Q, named a minorization function, defined on the 

cartesian product X × X and such that: ∀(x, x0) ∈ X × X, 

Ψ(x) ≥ Q(x∣x0) and B�
@� = C�
@|
@�. It comes from the 

above property that forall �
@, 
�� ∈ � × �, C�
�|
@� ≥ C�
@|
@� ⇒ B�
�� ≥ C�
�|
@� ≥ B�
@� 
One challenge is to be able to build a minorization 
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function Q that is easy to deal with. The surrogate function 

for minorization is chosen by resorting to inequalities of 

mathematical analysis as Arithmetic or Geometric Mean 

inequality, Cauchy-Schwarz inequality, Jensen’s inequality, 

minimization via supporting hyperplane, etc. Although the 

surrogate functions can be defined in many different ways, 

what should be bear in mind is that they define pointwise 

lower-bound of the gap between two values of the objective 

function Ψ. 

Once the minorization function Q is available, a MM-

algorithm consists in cycling between two steps until some 

stopping criterion is fulfilled as follows: 

(1). Compute 
 → C�
|
H��� for 
H��  fixed; this step 

stands for the E-step of an EM-algorithm. 

(2). Update xt − 1 as xt=argmax{Q(x∣xt − 1), x ∈ X}; this 

maximization step is the analog of the Maximization 

step of an EM-algorithm. 

Therefore, starting at an initial value 
@, the update scheme 

shown above produces a sequence �
H�H ∈ ℕ in X such that B�
H� ≤ B�
H��� B�
H + 1� = C�
H��|
H��� 
It comes a sequence �
H�H ∈ ℕ  could be carried out, a 

cluster point of which might be a local maximum for the 

function Ψ (i.e. a stationary point for Ψ). The convergence of 

the MM-algorithm has been addressed in several books and 

survey papers including Wu (1983), Lange (2013) and Vaïda 

(2005) [15, 14, 16]. General conditions of convergence were 

provided in the book by Lange (2013) [14] and Vaida (2005) 

has established some additional one [16]. 

3. Derivation of a MM-algorithm for 

Minorizing the Left Censored Data 

Log-Likelihood 

The design of a MM-algorithm is based on a wise choice 

of minorizing function to obtain a simple lower bound for the 

log-likelihood function. In the subsection below, the 

minorizing function for our log-likelihood is derived. 

3.1. Derivation of a Function Minorizing the  

Log-Likelihood 

Let’s denote: 7���|
-: , ⋯ , 
 : � = −+�79:�	� − +79:;����< 
+�>79: 

?�- �
?: − 
� + �79:�
-: − 
� −>79: 
?�- �
?: − 
� 

− 1	>�
?: − 
�: � 
?�- − K+ − 1	 L �
�: − 
� 

7-��|
-: , ⋯ , 
 : �= 79: M" #����
@ �
� M− �
-: − 
�#	 N%#N 

One has 7��|
-: , ⋯ , 
 : � = 79:�+!� + 7���|
-: , ⋯ , 
 : �+ 7-��|
-: , ⋯ , 
 : � 
7���|
-: , ⋯ , 
 : � ≥ C���|�′, 
�: , ⋯ , 
 : �= C���|�′, �
�: ����: � 

where C���|�′, �
�: ����: � = −+79:;����< + +�;1 − 79:�	′�< 
+�>79: 

?�- �
?: − 
′� + �>
�: − 
′
?: − 
′ 
?�-  

+� M79:�
-: − 
′� + 
�: − 
′
-: − 
′N 

− �-2�′ P+ +>
�: − 
′
?: − 
′ 
?�- + 
�: − 
′
-: − 
′Q 

−�′�
�: − 
′�-2�
�: − 
�- P>
�: − 
′
?: − 
′ 
?�- + 
�: − 
′
-: − 
′Q 

−�+ − 1��
�: − 
�-2	′�
�: − 
′� + 
> 1
?: − 
′ 
?�- − +�′ 	-2	′- 

− 1	>�
?: − 
�: � 
?�- − �+ − 1�	′�
�: − 
′�2	-  

−>79: 
?�- �
?: − 
′� − 
′> 1
?: − 
′

 
?�-  

See Appendix 7.2 

Let’s denote: 

R@��� = " #����
@ �
� − �
-: − 
�#	 %# 

R���� = 1R@���" 79:�
@ �#�#����
� M− �
-: − 
�#	 N%# 

R-��� = 1R@���" #��
@ �
� M− �
-: − 
�#	 N %# 

One has 7-��|
-: , ⋯ , 
 : � ≥ C-��|�′, 
-: , ⋯ , 
 : � 
where 

C-��|�′, 
-: , ⋯ , 
 : � = �R���′� − R-��′��
-: − 
�-2	′�
-: − 
′�  

−	′�
-: − 
′�R-��′�2	- + R-��′��
-: − 
′�	′ − �′R���′�+ 79:;R@��′�< 
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See Appendix 7.3 

Since 7��|
-: , ⋯ , 
 : � = 79:�+!� + 7���|
-: , ⋯ , 
 : �+ 7-��|
-: , ⋯ , 
 : � 
one has 7��|
-: , ⋯ , 
 : � ≥ 79:�+!� + C���|�′, �
�: ����: �+ C-��|�′, 
-: , ⋯ , 
 : � 
and the following statement holds 7��|
-: , ⋯ , 
 : � ≥ 79:�+!� + C��|�′, �
�: ����: � 
where C��|�′, �
�: ����: �= C���|�′, �
�: ����: �+ C-��|�′, 
-: , ⋯ , 
 : � 

Moreover if SC��|�′, �
�: ����: � denotes the  

gradient vector of the function � → C��|�′, �
�: ����: � one 

has  SC��|�′, �
�: ����: � = S7��′|
-: , ⋯ , 
 : � 
From previous results, one may note that the obtained Q-

function takes into consideration the “n” complete data 

although the original log-likelihood function is based on the 

“n-1” largest data. 

3.2. Computational Procedure: Maximization Algorithm 

3.2.1. Preliminaries TC��|�′, �
�: ����: �T�
= −+ UV���
+ ��′ W1 + 1+ P>
�: − 
′
?: − 
′ 

?�- + 
�: − 
′
-: − 
′QXY 

−+�79:�	′� − 1� +>79: 
?�- �
?: − 
′� + 79:�
-: − 
′� 

+>
�: − 
′
?: − 
′ 
?�- + 
�: − 
′
-: − 
′ + R���′� 

where λ→ψ(λ) is the digamma function 

TC��|�′, �
�: ����: �T
= − �′�
�: − 
′�-�
�: − 
�� P
�: − 
′
-: − 
′
+>
�: − 
′
?: − 
′

 
?�- Q 

+1	′ �+ − 1��
�: − 
�
�: − 
′ + R-��′��
-: − 
�
-: − 
′ +> 1
?: − 
′ 
?�-  

TC��|�′, �
�: ����: �T	 = −+�′		′2 + 1	->�
?: − 
�: � 
?�-  

+1	� Z�+ − 1�	′�
�: − 
′� + 	′�
-: − 
′�R-��′�[ 
TC��|�′, �
�: ����: �T	 = −1	� \+�′	′- 	] − 	>�
?: − 
�: � 

?�� ^ 
−1	� Z−	′�+ − 1��
�: − 
′� + �
-: − 
′�R-��′�[ 

The function � → C��|�′, �
�: ����: � is concave and thus 

admits a unique global maximum for any θ′ fixed. 

Hessian matrix of the function � → C��|�′, �
�: ����: � is 

diagonal with nonzero components T-C��|�′, �
�: ����: �T�-
= −+ UTV���T�
+ 1�′ \1 + 1+ P>
�: − 
′
?: − 
′ 

?�- + 
�: − 
′
-: − 
′Q^Y 
T-C��|�′, �
�: ����: �T
- = − 1	′ M + − 1
�: − 
′ + R-��′�
-: − 
′N 

−3�′�
�: − 
′�-�
�: − 
�] \
�: − 
′
-: − 
′ +>
�: − 
′
?: − 
′
 
?�- ^ 

T-C��|�′, �
�: ����: �T	- = −+�′	′- − 2	�>�
?: − 
�: � 
?�-  

− 3	] Z�+ − 1�	′�
�: − 
′� + 	′�
-: − 
′�R-��′�[ 
Since all these components are negative, it comes that the 

Hessian matrix is negative-semidefinite. Consequently, the 

function � → C��|�′, �
�: ����: �  is concave and admits a 

unique global maximum for any θ′ fixed in Θ. 
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3.2.2. Updating Scheme 

Algorithm 1: Parameters’ updating scheme 

Require: `, �a = b��a , 	a , 
a� 
Output: ` + 1, �a + 1 = b��a + 1, 	a + 1, 
a + 1� 
Do: until a stopping criteria is fulfilled: 

(1). ���a + 1� = b��, 	a, 
a� 
(2). �a�� = cd:ec
�f@C����a���|�a� �ag = b��a��, 	a, 
a�, 
(3). 	��a��� = b��a + 1, 	, 
a� 
(4). 	a�� = cd:ec
hf@C�	��a + 1�|�ag� �agg = b��a��, 	a��, 
a�, 
(5). 
��a��� = b��a��, 	a��, 
� 
(6). 
a�� = cd:ec
�1�i:(C�
��a���|�agg� 

k=k + 1 

3.2.3. Updating Step for the Location Parameter 

One can write TC��|�′, �
�: ����: �T
 = + − 1�
�: − 
�� `�
�: − 
|�′� 
where 

`�#|�′� = −�′�
�: − 
′�-+ − 1 \>
�: − 
′
?: − 
′ 
?�- + 
�: − 
′
-: − 
′^ 

+1+ − 1 \> 1
?: − 
′ 
?�- + R-��′��
-: − 
��	′�
-: − 
′� ^ #] 

+ j 1	′�
�: − 
′� + R-��′��+ − 1�	′�
-: − 
′�k #� 

To solve the equation TC��|�′, �
�: ����: �T
 = 0 

is equivalent to `�
�: − 
|�′� = 0. It is readily seen that k is 

a monotonically increasing function on the domain �0, +∞� 
since R-��′� > 0 and �
?: − 
′� > 0 

for r ≥ 1. Moreover  

75e0→@,0f@ ` �#� = −�′�
�: − 
′�-+ − 1 \>
�: − 
′
?: − 
′
 
?�- + 
�: − 
′
-: − 
′^< 0 

and limu→ + ∞k(u)= + ∞. Thus the equation k(u)=0 has an 

unique solution in �0, +∞�and the same for the equation TC��|�′, �
�: ����: �T
 = 0 ∈ �−∞, 
�: �. 
3.2.4. Updating Step for the Scale Parameter TC��|�′, �
�: ����: �T	 = − 1	� :�	|�′� 
and 

:�	|�′, �
�: ����: � = +�′	]	′- − 	>�
?: − 
�: � 
?��  

−	′Z�+ − 1��
�: − 
′� + �
-: − 
′�R-��′�[ 
The assertion  TC��|�′, �
�: ����: �T	 = 0 

holds if and only if g(β∣θ′, (xi:n)i=1:n)=0, the latter being 

equivalent to finding root of the function β→g(β∣θ′, 
(xi:n)i=1:n). The derivative g′(β∣θ′, (xi:n)i=1:n) of this 

function is equal to 0 if  

	 = p	′-4�′ \1+>�
?: − 
�: � 
?�� ^2

 

Let 

	@ = p	′-4�′ \1+>�
?: − 
�: � 
?�� ^2

 

one notices that :′�	|�′, �
�: ����: �is positive if 	 > 	@ and 

negative in the left side of 	@. Since R-��′� > 0, :�0|�′, �
�: ����: � = −	′;�+ − 1��
�: − 
′�< −	′�
-: − 
′�R-��′� < 0 

and it follows that :�	@|�′, �
�: ����: �  is also negative. 

Therefore the unique solution of the equation  TC��|�′, �
�: ����: �T	 = 0 

belongs to the interval �	@, +∞�. 
3.2.5. Updating Step for the Shape Parameter TC��|�′, �
�: ����: �T�

= −+ UV���
+ ��′ \1 + 1+ P>
�: − 
′
?: − 
′

 
?�- + 
�: − 
′
-: − 
′Q^Y 

+>79: 
?�- �
?: − 
′� + 79:�
-: − 
′� +>
�: − 
′
?: − 
′

 
?�-  

+
�: − 
′
-: − 
′ + R���′� − +�79:�	′� − 1� 
To solve the equation  
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TC��|�′�T� = 0 

is equivalent to find the roots of the function ℎ��|�′, �
�: ����: �= V��� + ��′ ���′|�
�: ����: �+ b��|�
�: ����: � 
where 

���′|�
�: ����: � = 1 + 1+ P>
�: − 
′
?: − 
′ 
?�- + 
�: − 
′
-: − 
′Q 

and b��′|�
�: ����: � = 79:�	′� − 1 

−1+ \>79: 
?�- �
?: − 
′� + 79:�
-: − 
′�^ 

−1+ \> 
�: − 
′
?: + − 
′ 
?�- + 
�: − 
′
-: − 
′ + R���′�^ 

h is increasing function of λ on �0, +∞�.  Since 

p(θ′|(xi:n)i=1:n) is positive, the function h has the same 

limites as the digamma function which tends to − ∞ and + ∞ 

as λ tends respectively to 0 and + ∞. Hence the function � → ℎ��|�′, �
�: ����: �  has an unique root in the interval �0, +∞�and the same for the solution of the equation  

st�u|ug,��':(�')i:(�s� = 0. 

From now on, the estimation method which corresponds to 

the algorithm exposed in this section will call Maximum 

Marginalized order statistics Likelihood (MMosLE). 

4. Simulation Study for an Empirical 

Evaluation of the Proposed Estimators 

A simulation study has been carried out to evaluate the 

performance of the estimators of the MMosLE method, the 

results of which is reported hereafter. These simulations was 

run by considering the same configurations of the three-

parameter gamma model of probability distribution as 

Nagatsuka & al. (2014), [3], by selecting the following 

values of the shape parameter λ: 0.5, 1.0, 2.0, 3.0, and 4.0 

when the location and the scale parameters are taken fixed as 

ν=0 and β=1. The performance of the estimators is evaluated 

through the bias and root-mean-squared error (RMSE). The 

performance statistics of the proposed estimators are thus 

compared to these reported in the paper by Nagatsuka & al. 

(2014), [3], for Location and Scale Parameters Free 

Maximum Likelihood method (LSPF-MLE) and the 

Bayesian Likelihood (BL) method proposed by Hall and 

Wang (2005) in [10], In addition, as in the paper by 

Nagatsuka & al. (2014), [3], joint bias of the three parameters 

as well as their joint mean squared error are compute in order 

to evaluate the marginal performance on mean squared error 

(MSE) of the estimators of the three parameters. The joint 

bias is sum of the absolute values of the bias and the joint 

MSE is the trace of the MSE matrix of the estimators. 

Since iterative algorithms depend on the choice of the initial 

value, two initializations step were tested. The first is 

deterministic while the second, based on the empirical moments, 

is stochastic. For the implementation of the later, many different 

initial values were trying and choose the solution that has the 

highest converged likelihood value. Both results will labeled 

MMosLE(1) and MMosLE(2) respectively. In the absence of 

precision, the results presented in the following will be those 

obtained with MMosLE(2) initialization step. All computations 

were carried out with R computing environment (R Core Team, 

(2015), [17]) and data were generated by the use of the package 

PearsonDS (Becker and Klössner, (2013), [18]). 

Table 1. Estimated bias, RMSE, and joint MSE based on 1000 simulations. 

 Shape Location Scale Joint 

shape sample Bias RMSE Bias RMSE Bias RMSE Bias MSE 

parameter size (n)         

0.5 20 0.065 0.290 0.001 0.023 -0.023 0.422 0.090 0.262 

 50 0.030 0.096 0.000 0.002 -0.028 0.262 0.057 0.078 

 100 0.023 0.064 0.000 0.001 -0.028 0.180 0.052 0.036 

1.0 20 0.311 1.573 -0.010 0.189 0.028 0.444 0.348 2.708 

 50 0.036 0.472 0.006 0.053 0.021 0.256 0.063 0.291 

 100 -0.001 0.151 0.005 0.014 0.020 0.167 0.026 0.051 

1.5 20 0.650 2.216 -0.049 0.419 0.028 0.486 0.728 5.320 

 50 0.062 0.682 0.014 0.136 0.046 0.286 0.122 0.566 

 100 -0.006 0.293 0.017 0.057 0.022 0.188 0.045 0.124 

2.0 20 0.735 2.708 -0.046 0.610 0.072 0.541 0.854 8.001 

 50 0.139 1.174 0.013 0.284 0.058 0.310 0.210 1.556 

 100 0.004 0.529 0.023 0.138 0.030 0.200 0.056 0.339 

3.0 20 0.738 3.096 0.048 0.907 0.132 0.589 0.918 10.752 

 50 0.318 2.080 0.023 0.601 0.068 0.359 0.409 4.818 

 100 0.166 1.291 0.000 0.419 0.029 0.232 0.195 1.895 

4.0 20 0.593 3.590 0.254 1.211 0.165 0.626 1.013 14.750 

 50 0.382 2.642 0.066 0.906 0.091 0.398 0.539 7.960 

 100 0.023 1.675 0.090 0.614 0.067 0.274 0.180 3.259 
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4.1. Variability of Estimates 

The boxplots in Figure 1 show that all the parameters’ 

estimators have a skew distribution when the sample size is 

small or medium. The skewness increases as the magnitude 

of the actual value of shape parameter increases. Therefore 

the asymptotic normality property cannot be considered if the 

sample sample size is not large enough. 

 

4.2. Monte Carlo Estimation of the Performance Metrics of 

the MMosLE Method 

The aim of this section is to discuss the performances of 

the MMosLE based on simulated datasets corresponding to 

the six configurations of the three-parameter gamma model 

of probability distribution stated at the beginning of the 

section. The discussion is based on the bias and the root 

mean squared error estimated using simulated dataset. 

 

Figure 1. Boxplot of estimated values of the parameters based on 1000 simulations. 
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Figure 2. Effect of initialization steps on shape parameter estimates based on 1000 simulated samples. 

Both initialization steps provide a positive bias for the shape parameter. Moreover, the magnitude of the bias is comparable 

when sample size is moderate or large (n ≥50). This statement is also valid for the root-squared-errors metric. For small sample 

size (n≤20) against, graphics suggest that the MMosLE (2) initialization step is more efficient in terms of bias and root-

squared-errors. 

 

Figure 3. Effect of initialization steps on location parameter estimates based on 1000 simulated samples. 
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For small sample size (n≤20), bias of location parameter estimator is positive when MMosLE(2) initialization step is used 

whilist that of MMosLE(1) initialization step is negative. However, the magnitude of bias is comparable in absolute value. In 

terms of root-squared-errors, MMosLE(2) initilization step outperfoms its competitor. For moderate or large sample 

size(n≥50), both initialization steps are comparable. 

 

Figure 4. Effect of initialization steps on scale parameter estimates based on 1000 simulated samples. 

No significative differences between metrics obtained with both initialization steps. Bias and RMSE of the scale parameter 

increase when the actual value of the shape parameter is large. 

 

Figure 5. Bias and RMSE for parameters’ estimates based on 1000 simulated samples. 



156 Etienne Ouindllassida Jean Ouédraogo et al.:  On Maximum Likelihood Estimation for the Three Parameter Gamma  

Distribution Based on Left Censored Samples 

 

Although the performances of the estimator evaluated 

through the estimation of the bias and the root mean squared 

errors are not strong for the samples of small size 

(approximately 20 or less) one can note that these 

performances improve quickly starting from modest sizes of 

sample (around 50). Indeed the bias and the root mean 

squared errors of the estimates of the three parameters 

improve as the sample size increases. 

4.3. Performance Metrics Estimated by Monte Carlo 

Simulations for Two Alternative Methods 

Let us start by giving a brief description of two estimation 

methods discussed in the recent literature on the fitting of 

three-parameter gamma distribution to skew dataset. One of 

these estimation procedure is the so-called Location and 

Scale Parameters Free Maximum Likelihood method (LSPF-

MLE) of Nagatsuka, Balakrishnan and Kamakura (2014), 

[3])., while the other is the Bayesian likelihood method (BL) 

of Hall and Wang (2005), [10]). 

 

 

4.3.1. Location and Scale Parameters Free Maximum 

Likelihood Method 

Given an iid sequence �������:  from a three-parameter 

gamma distribution, let’s considers the statistics  

v�: = ��: − ��: � : − ��: , 5 = 1,⋯ , + 

The LSPF-MLE method is performed in two steps as 

follows: 

step 1: Since the distributions of W1:n’s depend only on the 

shape parameter λ and this one is estimated by maximizing 

the likelihood of λ based on the sequence �v�: ���-:� ���. 
step 2: let’s denote 
̂� �H = ��: and  

	̂� �H = 1+�̂>��� − 
̂� �H� 
���  

The location and the scale parameters are estimated as 

follows: 


̂ = ��: − 	̂̂� �H " y1 − !;
|�̂, 1,0<z ��
@ %
 

Table 2. Location and Scale Parameters Free MLE(LSPF-MLE) method: estimated bias, RMSE, and joint MSE based on 1000 simulations from Nagatsuka 

and al. (2014). 

 Shape Location Scale Joint 

shape sample Bias RMSE Bias RMSE Bias RMSE Bias MSE 

parameter size (n)         

0.5 20 0.055 0.208 -0.003 0.010 0.016 0.447 0.074 0.243 

 50 0.019 0.102 0.000 0.001 0.003 0.276 0.022 0.087 

 100 0.002 0.060 0.000 0.000 0.002 0.188 0.004 0.039 

1.0 20 0.276 1.004 -0.022 0.091 -0.018 0.417 0.316 1.190 

 50 0.053 0.258 -0.004 0.027 -0.003 0.244 0.060 0.127 

 100 0.031 0.162 -0.002 0.012 -0.014 0.163 0.047 0.053 

1.5 20 0.532 1.845 -0.025 0.214 -0.001 0.455 0.558 3.657 

 50 0.128 0.834 -0.009 0.098 0.011 0.271 0.148 0.779 

 100 0.038 0.324 -0.002 0.052 0.005 0.176 0.045 0.139 

2.0 20 0.649 2.462 0.009 0.320 0.028 0.483 0.686 6.397 

 50 0.285 1.269 -0.015 0.194 0.005 0.309 0.305 1.743 

 100 0.087 0.559 0.000 0.115 0.002 0.194 0.089 0.363 

3.0 20 1.393 5.333 0.159 0.624 0.091 0.589 1.643 29.177 

 50 0.789 3.406 0.042 0.423 -0.002 0.370 0.833 11.917 

 100 0.316 1.464 0.016 0.289 -0.013 0.237 0.345 2.283 

4.0 20 1.801 7.391 0.432 0.991 0.141 0.682 2.374 56.074 

 50 1.344 5.018 0.152 0.702 0.005 0.418 1.501 25.848 

 100 0.523 2.688 0.107 0.496 -0.012 0.275 0.642 7.547 

 

4.3.2. Bayesian Likelihood Method 

The bayesian likelihood method studied by Hall and Wang 

(2005), [10], considers the density functions of the form ℎ�
|
, {� = �
 − 
����:�
 − 
|{�1��,����
�  where 

limy→0g(y∣φ) is a positive constant and λ>0. Therefore the 

likelihood may be unbounded for 0<λ<1. The density 

function of the three-parameter gamma distribution belongs 

to this class of density functions. Let’s denote�
�: ����: the 

order statistics of a sample �
�����:  drawn from a three 

parameter gamma distribution, Hall and Wang’s method 

hinges on the maximization of the penalized likelihood 

7��+��|
�: , ⋯ , 
 : � = 
�: − 

-: − 
.� 
��� �
�: |�� 

The factor (x1:n − ν)/(x2:n − ν), an empirical prior for ν, 

shifts the estimator of ν from the value x1:n which is known 

to be an overestimate to a more plausible value that is smaller 

than 
�: . 
Table 2 shows numerical summary of the Monte Carlo 

simulations reported in the paper of Nagatsuka & al. (2014) 

[3] to bring insight on the performance of their method. 
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Numerical summary in Table 3 result from Monte Carlo 

simulations carried out by Nagatsuka and al. (2014) [3] with 

the aim of comparing performances of the LSPF-MLE 

estimators with those of the BL method. 

Table 3. Bayesian Likelihood(BL) method: estimated bias, RMSE and joint MSE based on 1000 simulations from Nagatsuka and al. (2014). 

 Shape Location Scale Joint 

shape sample Bias RMSE Bias RMSE Bias RMSE Bias MSE 

parameter size (n)         

0.5 20 0.067 0.204 0.001 0.008 -0.025 0.412 0.093 0.211 

 50 0.033 0.093 0.000 0.001 -0.033 0.250 0.066 0.071 

 100 0.030 0.058 0.000 0.000 -0.053 0.178 0.083 0.035 

1.0 20 0.373 2.179 -0.018 0.186 -0.021 0.419 0.412 4.958 

 50 0.025 0.242 0.006 0.026 0.013 0.249 0.044 0.121 

 100 0.012 0.153 0.003 0.012 -0.001 0.165 0.016 0.051 

1.5 20 1.489 7.564 -0.127 0.714 -0.009 0.480 1.625 57.954 

 50 0.098 0.888 0.006 0.125 0.026 0.282 0.130 0.884 

 100 0.009 0.318 0.011 0.056 0.016 0.181 0.036 0.137 

2.0 20 1.627 7.993 -0.156 0.923 0.022 0.508 1.805 64.998 

 50 0.260 1.300 -0.019 0.276 0.018 0.312 0.297 1.864 

 100 0.061 0.564 0.011 0.131 0.010 0.199 0.082 0.375 

3.0 20 3.397 11.598 -0.400 1.797 0.095 0.641 3.892 138.154 

 50 1.018 4.778 -0.125 0.868 0.022 0.376 1.165 23.724 

 100 0.319 1.482 -0.038 0.403 -0.002 0.226 0.359 2.410 

4.0 20 4.229 14.501 -0.479 2.639 0.179 0.772 4.887 217.839 

 50 1.953 7.479 -0.312 1.591 0.029 0.403 2.294 58.629 

 100 0.561 2.762 -0.079 0.772 0.011 0.255 0.651 8.290 

4.4. Graphical Comparison of the Simulation Study Results with Those of the LSPF-MLE and BL Methods 

In what follows the aim is to compare the performances of the Maximum Marginalized order statistics Likelihood method 

(MMosLE) to that of the two alternative methods outlined in the preceding subsection by using graphical displays of the 

statistics computed from Monte Carlo simulations. 

 

Figure 6. Bias and RMSE for shape parameter estimates based on 1000 simulated samples. 
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First of all one notices that for the three methods under 

comparison the bias of the shape parameter’s estimate is 

positive. This means that all the three methods overestimate 

the shape parameter. The magnitude of the bias are 

comparable for the three methods for values of the shape 

parameter not greater than 1. The graphics above suggest also 

that the bias improves quicker as the sample size increases 

for the MMosLE method proposed in this paper. The RMSE 

of the shape estimator provided by the proposed method is 

smaller than that of the LSPF-MLE and BL methods when 

the actual value of the shape parameter is greater than 2.0; 

this suggests that the proposed estimator exhibits less 

variability amongst samples. 

When sample is small the proposed method overestimates 

the location parameter as the LSPF-MLE method while the 

BL method underestimates the location. The magnitude of 

the bias of the proposed method is the smaller for value of 

the shape parameter larger than 1.5. When the sample size 

increases the magnitude of the bias of the estimator of the 

location parameter is comparable for the proposed method 

and the LSPF-MLE method. Both methods overestimate the 

location parameter as the actual value of the shape parameter 

increases (larger than 2.0). The graphics suggest also the 

magnitude of the RMSE is comparable between the LSPF-

MLE method and the method proposed in this paper and 

outperform the BL method. 

 

Figure 7. Bias and RMSE for location parameter estimates based on 1000 simulated samples. 
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Figure 8. Bias and RMSE for scale parameter estimates based on 1000 simulated samples. 

The bias of the scale parameter’s estimator has a 

magnitude larger than that of the LSPF-MLE estimator and 

the BL estimator. This bias is positive for the three estimators 

and increases with the magnitude of the shape parameter. 

Nevertheless the magnitudes of root-mean-squared-errors are 

comparable for MMosLE method and the LSPF-MLE 

method or smaller. The root mean-squared-errors of the 

parameters’ estimators increase as the shape parameter 

increases for the three alternative methods but they improve 

as the sample size increases. 

 

Figure 9. Joint bias and joint MSE based on 1000 simulated samples. 
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As one might be expected, the joint bias and joint MSE 

generally increase with the shape parameter for all the three 

methods. However the magnitude of both statistics decreases 

as the sample size increases. When the theorical value of the 

shape parameter is less than 1.0, the joint bias and joint MSE 

of the three methods are comparable. In other cases, the 

MMosLE method outperforms other methods, based on joint 

bias and joint MSE. 

5. Illustrative Example: Maximum Flood 

Dataset 

Practical application of the proposed method is considered 

in this section by fitting the three-parameter gamma 

distribution to the well known dataset on maximum flood 

levels from Antle and Dumonceaux (1973) [19]. This dataset 

gathers the records of the maximum flood levels in millions 

of cubic feet per second for the Susquehanna River at 

Harrisburg, Pennsylvania, over 20 four-year periods from 

1890–1969. Several authors, including Hirose (1995), 

Nagatsuka & al. (2014), Hall and Wang (2005), ([20, 3, 10]), 

have considered this dataset in the past to illustrate the 

efficiency of estimation methods for three-parameter gamma 

model, althought Antle and Dumonceaux did not initially 

consider this dataset for an estimation method effectiveness 

study. The estimates obtained by using the MMosLE method 

proposed in this paper is discussed hereafter with those 

obtained using the LSPF-MLE and BL methods respectively. 

5.1. Parameters’ Estimates Using MMosLE Method and 

LSPF-MLE and BL Methods 

The table below displays the estimates of the model’s 

parameters using three alternative methods: the Maximum 

Marginalized order statistics Likelihood (MMosLE) that 

motivates this paper, the Location and Shape Parameters 

Free-Maximum likelihood (LSPF-MLE) introduced by 

Nagatsuka & al. (2014), [3] and Bayesian Likelihood 

proposed by Hall and Wang (2005), [10]. Estimates obtained 

with MMosLE method are followed by an estimated 

bootstrap bias and a bootstrap 95% − confidence interval. 

Estimates obtained with LSPF-MLE method and BL method 

are reported from Nagatsuka & al. (2014), [3]. 

Table 4. Dumonceaux and Antle dataset: parameters’ estimates using 

MMosLE, LSPF-MLE and BL methods. (estimates obtained by LSPF-MLE 

and BL are reported from Nagatsuka & al. (2014)). 

 Shape Location Scale 

MMosLE 3.020 0.208 0.071 

LSPF-MLE 2.371 0.235 0.080 

BL 1.986 0.244 0.090 

All the three methods give positive estimates of the 

location parameter. Substantial differences in the magnitude 

of the shape parameter’s estimates should be noticed: the 

MMosLE method gives the largest estimate of the shape 

parameter and the smallest estimate is given by the BL 

method. Further, smallest estimates of the location and the 

scale is obtained with the MMosLE method while the BL 

method gives the largest estimate. 

Several other earlier papers dealing with the fitting of the 

three-parameter gamma distribution, including Cohen and 

Whitten (1982), Hirose (1995), Tzavelas (2009)([2, 20, 11]), 

have resorted to this dataset to illustrate the behavior of their 

estimating methods. In the framework of the likelihood 

maximization, Hirose (1995) [20] and Tzavelas (2009) [11] 

found by different approaches that the log-likelihood has a 

local maximum reported in the second line of Table 5 

(labelled ’Hirose (a)’). Hirose pointed out that the log-

likelihood has a saddle point reported in the third line in 

Table 5 (labelled ‘Hirose (b)’) and this was confirmed by 

Tzavelas [11]. This saddle point appears to be very close to 

the model’s parameters estimates obtained by Cohen and 

Whitten (1982), [2], using maximum likelihood method 

(fourth line in Table 5. Their modified Moment Estimate 

method (MME) gave estimated values that are close that 

obtained by MMosLE procedure, Cohen and Whitten (1986), 

[21]. This exemple suggests that for samples of small size the 

maximum likelihood estimates may exhibit significant 

differences with estimates provided by other estimating 

procedures. 

Table 5. Three-parameter gamma model fitted on Dumoceaux & Antle 

dataset. 

 Shape Location Scale 

Hirose (a) 1.3837 0.2596 0.1182 

Hirose (b) 1.1816 0.2630 0.1356 

Cohen & Whitten MLE 1.1940 0.2628 0.1343 

Cohen & Whitten MME 2.9043 0.2096 0.0735 

5.2. Diagnostic Plots for Goodness-of-Fit 

The graphics in Figure 10 are devoted to goodness-of-fit 

diagnostics. The gamma distribution with shape and scale 

parameters equal to 1 stands for the reference distribution; 

therefore the x-coordinates (coordinates on the horizontal 

axis) are quantiles of that distribution for probabilities pi=(i − 

0.5)/(20), i=1:20. The y-coordinates(coordinates on vertical 

axis) of black points are order statistics of the observed data. 

The y − coordinates of the upper (resp. lower) red points are 

0.975 (resp. 0.025) quantiles of the empirical distributions of 

the order statistics from samples of size 20 generated by the 

fitted distribution (parametric bootstrap, Carpenter and 

Bithell (2000), [22]), the number of such samples being 

1000. Since the black points (describing the variability of 

observed data) are inside the envelop delimited by the red 

points, there is no evidence against the hypothesis the 

observed data are generated by a three-parameter gamma 

distribution. 
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Figure 10. Goodness-of-fit diagnostic plots. 

Note that this dataset was not originally used by 

Dumonceaux & Antle (1973) in [19] for probability 

distribution fitting purpose; their aim in using this dataset 

was to illustrate the claim that “the ratio of maximized 

likelihood provides a good test for selecting” one distribution 

between the log-normal and the Weibull distributions. 

5.3. Bootstrap Estimates of the Bias and the Confidence 

Interval Using MMosLE Method 

The bias and the confidence intervals are computed by 

using the parametric bootstrap approach (Carpenter and 

Bithell (2000), [22]). 5000 samples of size 20 from the three-

parameter gamma distribution are generated with the 

parameters equal to the fitted values. 

One observes first that the confidence interval for the 

shape parameter is broad. The confidence interval of the 

location parameter includes zero as possible value for this 

parameter. The confidence intervals for the shape parameter 

and the scale parameter include no negative values. 

Table 6. Bootstrap estimates of bias and bias-corrected percentile 95%-

confidence interval. 

 Shape Location Scale 

Bias 5.301 -0.046 0.005 

95% CI’s lower bound 1.014 -0.447 0.012 

95% CI’s upper bound 64.582 0.282 0.174 

6. Conclusion 

In this paper maximum likelihood approach is proposed to 

estimate the parameters of the three-parameters gamma 

distribution. The likelihood is based on n − 1 largest order 

statistics of a sample of size n from a three-parameter gamma 

distribution. The maximum likelihood estimates of the 

model’s parameter is obtained under the constrain that the 

location parameter is larger than the first order statistics and 

by resorting to a MM-algorithm by doing like that all the 

dataset is taken into account in the estimation procedure. 

Although the distributions of the estimates exhibit skewness 

when sample size is small or medium, the results of Monte 

Carlo simulation study suggest that the method is efficient as 

the bias and the root-mean-square error improve as the 

sample size increases. These results are compared with those 

of two alternative methods: the location and scale parameters 

free maximum likelihood estimators (LSPF-MLE) method of 

Nagatsuka & al. (2014), and the Bayesian Likelihood (BL) 

method of Hall and Wang (2005). The main conclusions of 

that comparison are as follows 

(1) The bias of the shape parameter has a small magnitude 

when its actual value is less than 1.5 and it improves quicker 

than for LSPF-MLE and BL in all the domain of this 

parameter. The RMSE of the shape parameter estimate 

improves quicker than for LSPF-MLE and BL. 

(2) The bias of the location parameter is small if the actual 

value of the shape parameter is less than 1.5 and its 

magnitude is comparable to the case of LSPF-MLE and BL if 

the actual value of the shape parameter is greater than 1.5. 

The RMSE of the LSPF-MLE is the smallest of the three 

methods but the RMSE of the BL method is the worse with 

respect to this performance metric 

(3) The scale parameter estimate computed by the LSPF-

MLE method or the BL method has smaller bias than the 

MMosLE method. 

The RMSE has a magnitude close to that of LSPF-MLE. 

7. Appendix 

7.1. Some Basic Inequalities 

Let u, v, u′ and v′ be strictly positive real numbers. The 

following assertions hold 

1. −79:�|� ≥ −79:�|′� � �| � |′� |′⁄  

2.  �#| E ��#-|′ 2#′⁄ � � �|-#′� 2|′⁄  

3. 79:�# = |� E
79:�# = |′� = |′79: �| |⁄ ′� �# = |′�⁄  

As a consequence of the inequalities (7.1)  stated above 

one has 

#79:�|� E #79:�|′� = # � �#-� �2#′�⁄ � �|′-#′� �2|-�⁄  
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since 

79:�|� = �79: K1|L E 79:�|′� − |′| − 1 

7.2. Proof of Proposition 3.1 

7.2.1. Minorizing the Terms in the Expression ~���|��:�,⋯ , ��:�� 
�79:�
?: − 
� ≥ �79:�
?: − 
′� + j
�: − 
′
?: − 
′k � 

−j
�: − 
′
?: − 
′k �-2�′ − 
�: − 
′
?: − 
′ �
�: − 
′�-�
�: − 
�- �′2  

Since 79:�
?: − 
� = 79:�
?: − 
�: � + �
�: − 
� ,    

the basic inequality (7.1) leads to 

79:�
?: − 
� ≥ 79:�
?: − 
′� + 
�: − 
′
?: − 
′ 79: 
�: − 

�: − 
′ 
Thus �79:�
?: − 
� ≥ �79:�
?: − 
′�+ ��
�: − 
′�
?: − 
′ 79: 
�: − 

�: − 
′ 
Applying inequality (7.1) and taking into account that λ>0 

and one has 

�79:�
?: − 
� ≥ �79:�
?: − 
′� + j
�: − 
′
?: − 
′k � 

−j
�: − 
′
?: − 
′k �-2�′ − j
�: − 
′
?: − 
′k �
�: − 
′�-�
�: − 
�- �′2  

−79:�
?: − 
� ≥ −79:�
?: − 
′� + 
 − 
′
?: − 
′ 
−�79:�	� ≥ −�79:�	′� + � − �-2�′ − �′ 	-2	′- 

7.3. Proof of Proposition 3.2 

1. By applying the convexity inequality to the − log 

function one obtains 

−79:�
?: − 
� ≥ −79:�
?: − 
′� + 
 − 
′
?: − 
′ 
Moreover 

−�79:�	� ≥ � j−79:�	′� − 	 − 	′	′ k 
≥ −�79:�	′� + � − 1	′ j�-2 	′�′ + 	-2 �′	′k 

≥ −�79:�	′� + � − �-2�′ − �′	-2	′- 

2. One has 

���� = " #����
@ �
� − 1	 ;�
-: − 
�#<%# 

and by Jensen inequality one obtains 7-��|
-: , ⋯ , 
 : � ≥ 79:;R@��′�< + �� − �′�R���′� 
− �1	 �
-: − 
� − 1	′ �
-: − 
′�� R-��′� 

Applying the basic inequality (7.1) results in what follows: 

− 1	 �
-: − 
� ≥ −	′�
-: − 
′�2	- − �
-: − 
�-2	′�
-: − 
′� 
and thus 7-��|
-: , ⋯ , 
 : � ≥ 79:;R@��′�< + �� − �′�R���′� 

−	′�
-: − 
′�2	- R-��′� − R-��′��
-: − 
�-2	′�
-: − 
′�  

+R-��′��
-: − 
′�	′  
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