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Abstract: This paper describes theoretical estimation of domains mean using double sampling with a non-linear cost 

function in the presence of non-response. The estimation of domain mean is proposed using auxiliary information in which the 

study and auxiliary variable suffers from non-response in the second phase sampling. The expression of the biases and mean 

square errors of the proposed estimators are obtained. The optimal stratum sample sizes for given set of non-linear cost 

function are developed. 
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1. Introduction 

1.1. Domains 

Domain is a subgroup of the whole target population of 

the survey for which specific estimates are needed. In 

sampling, estimates are made in each of the class into 

which the population is subdivided; for instance, the focus 

may not only be the unemployment rate of the entire 

population but also the break-down by age, gender and 

education level. Units of domains may sometimes be 

identified prior to sampling. In such cases, the domains can 

be treated as separate stratum from a specific sample taken. 

Stratification ensures a satisfactory level of 

representativeness of the domains in the final sample. These 

domains are called planned domains. 

1.2. Domain Estimation 

Consider a finite population under study U of size N  

divided into D  domains; 1 2, ,..., DU U U  respectively. 

Domain membership of any population unit is unknown 

before sampling. Its assumed that the domains are quite large 

and for a typical th
d  domain dU  several characteristics 

maybe defined as described by Gamrot [4]. This includes; 

Domain total; d k

d

U d

u

Y y=∑   

Domain mean; 
1

d k

d

U d
d u

Y y
N

= ∑   

Domain variance; ( ) ( )2
2 1

1d d

d

U d u
d k u

S Y Y Y
N ∈

= −
− ∑   

Domain Covariance between two characters X  and Y  is 

given by; 

( ) ( )1

1d k d k d

d

U d u d u
d k u

Cov x X y Y
N ∈

= − −
− ∑  

According to Meeden [7] domain can be estimated by use 
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of a non-informative Bayesian approach where a polya 

posterior is used on finite population that has little or no prior 

information about the population. Although a prior 

distribution is not specified there is a posterior distribution 

which may be used to make inferences. 

Udofia [12] proposed estimate of domains using double 

sampling for probabilities proportional to size (PPS) with 

known constituent domain. The assumptions proposed by 

Udofia [12] are; 

(i) The size of auxiliary variable X  is not known. 

(ii) The distribution of the variable ( )Z  that defines the 

domain is the not known prior and therefore the population 

size ( )jhN  of the domain is also known. 

(iii) The cost of measuring the variable X  and Z  in each 

stratum is much lower than that of measuring of the study 

variableY . 

Aditya et al. [1] developed a method of estimating domain 

total for unknown domain size in the presence of non-

response with a linear cost function using two-stage sampling 

design. In this method the response mechanism is assumed to 

be deterministic. 

1.3. Double Sampling in the Presence of Auxiliary 

Information 

In many sampling procedures the prior knowledge about 

the population mean of the auxiliary variable is required. 

If there is no such information, it’s easier and cheaper to 

take on the large initial sample from which the auxiliary 

variable is measured and from which the estimation of the 

population parameters like the total, mean or the 

frequency distribution of the auxiliary variable X  is made. 

Srivastava [11] proposed a large class of ratio and product 

estimators in double sampling. It was found that the 

asymptotic minimum variance for any estimator of this 

class is equal to that which is generally believed to be 

linear regression estimators. According to Sahoo and 

Panda [10] if an experimenter knows the population mean 

of an additional auxiliary variable, say, Z  whereas the 

population mean of an auxiliary variable X is unknown 

and can be estimated using double sampling scheme, it is 

possible to come up with a class of estimators for the 

finite population mean Yµ . 

1.4. Double Sampling for the Ratio Estimator in the 

Presence of Non-Response 

Hansen and Hurwitz [5] proposed a way of dealing with 

non-response to address the bias problem. In this case, when 

dealing with non-response, a sub-sample is taken from the 

non-respondents to get an estimate of the sub-populations 

represented by the non-respondents. Cochran [2] employed 

Hansen and Hurwitz [5] technique and proposed ratio and 

regression estimation of the population mean of the study 

variables where the auxiliary variable information is obtained 

from all the sample units with some of the sample units 

failing to supply information on the study variable. 

According to Oh and Scheuren [8] and Kalton and Karsprzyk 

[6], non-response is often compensated by weighting 

adjustment and imputation respectively. In these methods it 

was argued that the procedure used in weighting adjustment 

and imputation aimed at eliminating the bias due to non-

response. Okafor and Lee [9] employed the double sampling 

method to estimate the mean of the auxiliary variable and 

went ahead to estimate the mean of the study variable in a 

similar way as Cochran [2]. In this method double sampling 

for ratio and regression estimation was considered. The 

distribution of the auxiliary information was not known and 

hence the the first phase sample was used to estimate the 

population distribution of the auxiliary variable while the 

second phase was used to obtain the required information on 

the variable of the interest. The optimum sampling fraction 

for the estimators for a fixed cost was derived. Performances 

of the proposed estimators were computed and compared 

with those of Hansen and Hurwitz [5] estimators without 

considering the cost. It was noted that for the results for 

which cost component was not considered, regression 

estimator functions were consistent than the Hansen and 

Hurwitz [5] estimator. Chaudhary and Kumar [3] proposed a 

method of estimating mean of a finite population using 

double sampling scheme under non-response. The proposed 

model was based on the fact that both the study and auxiliary 

variable suffered from the non-response with the information 

of X not available. Hence the estimate of X at first phase is 

given by, 

1 2

/ / / /
1 2/

/

n hn x n x
x

n

+
=                                    (1) 

With the corresponding variance of, 

( )*

2

/
/ 2 2

2/ /

1 1 1
x x

L
V x S W S

Nn n

 − = − +        
             (2) 

Where 
1

/
nx  and 

2

/
hx  are means from the 

/
1n  responding 

units and 
/
2n  non-responding units respectively. 

2
xS  and 

2

2
xS  

are mean square errors of the entire group and non-

responding respectively with /L  as the inverse sampling rate 

at first phase of the sampling. 

From the previous studies, a number of researchers have 

considered a linear cost function when estimating domains. 

In dealing with non-response most of them have considered 

subsampling while holding to the idea that the response 

mechanism is deterministic. This study therefore focuses on 

the estimation of domain mean using double sampling for 

ratio estimation with non-linear cost function with a random 

response mechanism. In this study we therefore establish an 

efficient and cost effective method of estimating domains 

when the travel cost component is inclusive and it is not 

linear. The problem of minimum variance and cost is 

addressed while considering non-linear cost function and 

optimal sample size.  
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2. Estimation of Domain Mean and 

Variance in the Presence of  

Non-Response 

2.1. Developing Domain Concept Theory with  

Non-Response 

The problem of non-response is inherent in many surveys. 

It always persists even after call-backs. The estimates 

obtained from incomplete data will be biased especially when 

the respondents are different from the non-respondents. The 

non-response error is not so important if the characteristics of 

the non-responding units are similar to those of the 

responding units. However, such similarity of characteristics 

between two types of units (responding and non-responding) 

is not always attainable in practice. In double sampling when 

the problem of non-response is present, the strata are 

virtually divided into two disjoint and exhaustive groups of 

respondents and non-respondents. A sub-sample from non-

responding group is then selected and a second more 

extensive attempt is made to the group so as to obtain the 

required information. Hansen and Hurwitz [5] proposed a 

technique of adjusting the non-response to address the 

problem of bias. The technique consists of selecting a sub-

sample of the non-respondents through specialized efforts so 

as to obtain an estimate of non-responding units in the 

population. This sub-sampling procedure albeit costly, it’s 

free from any assumption hence, one does not have to go for 

a hundred percent response which can be substantially more 

expensive. 

In developing the concept of domain theory with non-

response the following assumptions are made; 

i. Both the domain study and auxiliary variables suffers 

from non-response. 

ii. The responding and non-responding units are the same 

for the study and auxiliary characters. 

iii. The information on the domain auxiliary variable dX

is not known and hence dX  is not available. 

iv. The domain auxiliary variables do not suffer from non-

response in the first phase sampling but suffers from 

non-response in the second phase of sampling. 

2.2. Proposed Domain Estimators 

Let U  be a finite population with N  known first stage 

units. The finite population is divided into D  domains; 

1 2, ,..., DU U U  of sizes 1 2, ,..., ,...,d DN N N N  respectively. 

Further, let dU  be the domain constituents of any population 

size dN  which is assumed to be large and known. LetU  and 

N  be defined as, 

1

∪
D

d
d

U U
=

=  and 
1

D

d

d

N N

=

=∑  respectively. 

Let dY  and dX  be the domain study and auxiliary 

variables respectively. Further, let dY  and dX be their 

respective domain population means and auxiliary means 

with ( )1, 2,3,...,
id dy i N=  and ( )1, 2,...,

id dx i N=  

observations on the th
i  unit. In estimating the domain 

auxiliary population mean dX  double sampling design is 

used. 

A large first phase sample of size /
n  is selected from N  

units of the population by simple random sampling without 

replacement (SRSWOR) design from which 
/
dn  out /

n  first 

sample units falling in the th
d  domain. The assumption here 

is that all the /
n units supply information of the auxiliary 

variable dX at first phase. A smaller second phase sample of 

size n  is selected from /
n by SRSWOR from which dn  out 

of n  second phase sample units fall in the th
d  domain. 

For estimating the domain population mean dX  of the 

auxiliary variables dX  from a large first phase sample of 

size
/
dn , values of the observations 

/

idx ( )/1, 2,3,..., di n=  are 

obtained and a sample auxiliary domain mean 
/
dx  is 

computed. From the second sample of size dn , let 
idy  and 

idx  be the domain study and auxiliary observations with

( )1, 2,3,..., di n= . Let 
idn  units supply the information on 

idy  and 
idx  respondents while 

2dn  be the non-respondents 

for both the study and the auxiliary domain variables 

respectively such that,  

1 2d d dn n n= + . 

For the 
2dn  non-respondent group at the second phase 

sampling, an SRSWOR of 
2dr  units is selected with an 

inverse sampling rate of 
2dv  such that, 

2

2

2

d

d
d

n
r

v
= , With 

2
1dv >  

All the 
2dr  units respond after making extra efforts of 

subsampling 
2dn  non-responding units. In developing the 

framework of double sampling there are two strata that are 

non-overlapping and disjoint. Stratum one consist of those 

units that will respond in the first attempt of the second phase 

population made up of 
1dN  units and stratum two consist of 

those units that would not respond in the first attempt of 

phase two with domain population units 2 1d d dN N N= − . 

Both 1dN  and 2dN  units are not known in advance. The 

stratum weights of the responding and non- responding 

groups are defined by 1

1

d

d
d

N
W

N
=  and 2

2

d

d
d

N
W

N
=  respectively with 

their estimators defined by 1

1 1

ˆ d

d d
d

n
W w

n
= =  and 2

2 2

ˆ d

d d
d

n
W w

n
= =  

respectively. 
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Following the Hansen and Hurwitz [5] techniques, the 

unbiased estimator for estimating the domain population 

mean using ( )
1 2d dn r+  observations on 

idy  domain study 

character is given by; 

1 2

1 2d

d d

d d r
d d

n n
y y y

n n
= +  

= 1 1 2 2dd d d rw y w y+                                (3) 

Similarly the estimate for domain auxiliary variable is 

given by; 

1 2

1 2d

d d

d d r
d d

n n
x x x

n n
= +  

= 1 1 2 2dd d d rw x w x+                             (4) 

Where dy  and dx  are the sample domain means for the 

observation 
idy  and 

idx respectively. 

The following sample characteristics are defined when 

estimating domain mean, 

i) 
1

1

1 1

1
d

i

n

d d
d i

y y
n =

= ∑ -domain mean of the study character 

from the response group based on 
1dn  units 

ii) 
2

2

2 1

1
d

d j

r

r d
d j

y y
r =

= ∑ -domain mean of the study character 

for the non-responding group of 
2dr  respondent units 

iii) 
1

1

1 1

1
d

i

n

d d
d i

x x
n =

= ∑ -domain mean of the auxiliary 

character from the response group based on 
1dn  units 

iv) 
2

2

2 1

1
d

d j

r

r d
d j

x x
r =

= ∑ -domain mean of the auxiliary 

character for the non-responding group of 
2dr  

respondent units 

In estimating the overall domain population mean in the 

presence of non-response, double sampling ratio estimation 

of the domain mean is used. Define; 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  and 2 /

ˆ
.d

d d d d

d

y
Y x r x

x
= =  

With the assumption that, 

/
d d dE x E x X  = =    , ( )d dE y Y=                    (5) 

3. Bias and Mean Square Error of the 

Ratio Estimator  

The expression for the Mean square error (MSE) of 
1RdY

and 
2RdY  are derived by the use of the Taylor's series 

approximation. 

Let 

( )
0 0

1d d
d d d d

d

y Y
y Y

Y
ε ε−

= ⇒ = +  

( )
11 1d d

d d d d
d

x X
x X

X
ε ε−

= ⇒ = +  

( )
2 0

/

1d d
d d d d

d

x X
x X

X
ε ε−

= ⇒ = +               (6) 

With the assumption that ( ) ( ) ( )
0 1 2d d dE E Eε ε ε= = 0=   

Further define; 

( )
0

2

2 d d
d

d

y Y
E E

Y
ε

  −
 =  
   

 

( )2

2

2 2

1d d

d d

d d

y Y
E E y Y

Y Y

 −   = = −  
  

 

= ( )
2

1
d

d

Var y
Y

 

= ( ) ( ) ( )
2

/
1 2 3 1 2 3 1 2 32

1
/ / /d d d d d d

d

V E E y n E V E y n E E V y r
Y

 + +
   

= 
2

2 2

2 2 2

2 / /

11 1 1 1 1
d d d

d

y y d y
d d dd d d

v
S S W S

N n nY n n

 −     
− + − +                

                              (7) 
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=
2

2 2

2 2 2

/ /

11 1 1 1
d d d

d

y y d y
d d dd d

v
C C W C

N n nn n

 −   
 − + − +             

 

Where, 
2

dyS =  Variance of the whole domain population mean of 

the study variable dY  

2

2

dyS =Variance of the domain population mean for the 

stratum of non-respondents for Stratum of non-respondents 

for the study variable dY  

Consider also 

2
22

1 2

1d d
d d

d d

x X
E E E x X

X X
ε

 −   = = −    
 

 

= ( )
2

1
d

d

Var x
X

 

= ( ) ( )
21 2 1 22

1
/ /d d d d

d

V E x n E V x r
X

    +    
 

= 2 2

2

22

2 2

11 1 dd
xx d

d
d d dd d

SS v
W

n N nX X

−  
− +     

   
        (8) 

Where, 
2

dxS = Variance of the whole domain population mean of 

the auxiliary variable dX  

2dv  = The inverse sampling rate 

2

2

dxS = Variance of the domain population mean for the 

stratum of non-respondents for Stratum of non-respondents 

for the auxiliary variable dX  

Next consider ( )
2

2
/ 2

2

2

1d d
d d d

d d

x X
E E E x X

X X
ε

 −
 = = −     

  

= ( )/

2

1
d

d

Var x
X

 

=

2/

2 /

1 dxd d

dd d

SN n

NX n

 −
  
 

 

=

2

/ 2

1 1 dx

dd d

S

Nn X

 
−  

 
                         (9) 

Consider, 

0 1

d d d d
d d

d d

y Y x X
E E

Y X
ε ε

   − −
  =     

    
 

= ( )( )1
d d d d

d d

E y Y x X
X Y

 − −
   

= ( )1
d d

d d

Cov x y
X Y

 

( ) ( ) ( ) ( )
2

1 1 1
/ / / /d d d d d d d d d d

d d d d d d

Cov E y n E x n E Cov y x n E Cov y x r
X Y X Y X Y

    = + +       

= ( ) ( )
2

1 1
/ /d d d d d d

d d d d

E Cov y x n E Cov y x r
X Y X Y

   +     

2 2 2

22 2

11 1 d dd d

d d d d

x yx y d

x y x y d
d d dd d d d

S SS S v
W

n N nX Y X Y
ρ ρ

−  
= − +     
   

                                                (10) 

Next, 

0 2

/
d d d d

d d
d d

y Y x X
E

Y X
ε ε

   − −
  =           
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= ( )( )/1
d d d d

d d

E y Y x X
X Y

 − −
   

= ( )/1
d d

d d

Cov y x
X Y

 

( ) ( ) ( ) ( )
2 2

/ / / / /1 1 1
/ , / / /

d dd d d d d d d r r d

d d d d d d

Cov E y n E x n E Cov y x n E Cov y x n
X Y X Y X Y

    = + +
      

 

/

1 1 d d

d d

x y

x y
d d dd

S S

N X Yn
ρ

 
= −  
 

                                                                                                         (11)

Consider, 

1 2

/
d d d d

d d

d d

x X x X
E E

X X
ε ε

   − −
  =           

 

= ( )( )/ /
1 22

1
/d d d d d

d

E E x X x X n
X

 − −
   

= ( )
2

2
/

12 / 2

1 1 1 dx

d d
dd d d

S
E x X

NX n X

 
− = −  

 
    (12) 

3.1. The Bias of the Ratio Estimator 
ˆ

RRRR
1111

dddd
YYYY  and 

ˆ
RRRR
2222

dddd
YYYY   

The ratio estimator of 
1

ˆ
RdY  and 

2

ˆ
RdY  can be defined as; 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  and 2 /

ˆ
.d

d d d d

d

y
Y x r x

x
= =  respectively  

Define 
1

ˆ
RdY  as 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  

( ) ( )
( )

0 2

1

1 1

1

d d d d

d d

Y X

X

ε ε

ε

 + +
 =
 +
 

 

( )( )
( )

0 2

1

1 1

1

d d

d

d

Y
ε ε

ε

 + +
 =
 +
 

 

( )
0 2 0 2 1 0 1 1 2 1

21d d d d d d d d d d dY ε ε ε ε ε ε ε ε ε ε = + + + − − − +
 

 (13) 

3.1.1. Bias of Ratio Estimator 
ˆ

RRRR
1111

dddd
YYYY  

Proposition 1 

The bias of the ratio estimator 
1

ˆ
RdY is given by, 

( ) ( )2

2 2 2 2 2 2/

11 1
d d d d d d d d d d

d

d x x x y y d x x x y x

d dd

v
Y C C c W C C C

n nn
ρ ρ

−   
− − + −     

  
 

Where, 

d

d

x

x
d

S
C

X
= , d

d

y

y
d

S
C

Y
= , 2

2

d

d

x

x

d

S
C

X
=  and 2

2

d

d

y

y

d

S
C

Y
=  

2

dyS =  Variance of the whole domain population mean of the study variable dY  

2

2

dyS =Variance of the domain population mean for the stratum of non-respondents for Stratum of non-respondents for the 

study variable dY
 

2

dxS = Variance of the whole domain population mean of the auxiliary variable dX  

2dv  = The inverse sampling rate 

2

2

dxS = Variance of the domain population mean for the stratum of non-respondents for Stratum of non-respondents for the 

auxiliary variable dX  

Proof 

1

ˆ
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0 2 0 2 1 0 1 1 2 1

21d d d d d d d d d d dY ε ε ε ε ε ε ε ε ε ε = + + + − − − +
 
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2

2 2 2 2 2

2

2 2

2
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2 2
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1

11 1

d d d d d d d d d d d d d

d d

d

d x y x y x y x y d x y x y x
d d d d dd d

d

x d x
d d d

v
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N n N n Nn n
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n N n

ρ ρ ρ
 −     

= + − − − − − −                  

−   
+ − +     
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( ) ( )2
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2 2

/

11 1
1

d d d d d d d d d d

d

d x x y x y d x x y x y
d dd

v
Y C C C W C C C

n nn
ρ ρ

 −   
= + − − + −          

 

( )
1

ˆ
Rd dE Y Y− ( ) ( )2

2 2 2 2 2

2 2

/

11 1
d d d d d d d d d d

d

d x x y x y d x x y x y
d dd

v
Y C C C W C C C

n nn
ρ ρ

 −   
= − − + −          

 

Hence Bias of 
1

ˆ
RdY ( ) ( )2

2 2 2 2 2

2 2

/

11 1
d d d d d d d d d d

d

d x x y x y d x x y x y
d dd

v
Y C C C W C C C

n nn
ρ ρ

 −   
= − − + −          

  

3.1.2. Bias of Ratio Estimator 
ˆ

RRRR
2222

dddd
YYYY  

Proposition 2 

The bias of the ratio estimator 
2

ˆ
RdY is given by, 2 2

2 2 2/

1 1 d dd d

d d d d

x yx y

d x y d x y
d d d d dd

S SS S
Y W

n X Y X Yn
ρ ρ

  
− +     

  

Proof 

Define 
2

ˆ
RdY  as 

2 /

ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =   

( ) ( )
( )
0 1

2

1 1

1

d d d d

d d

Y X

X

ε ε

ε

 + +
 =
 +
 

 

( )( )
( )

0 1

2

1 1

1

d d

d

d

Y
ε ε

ε

 + +
 =
 +
 

 

( )
0 1 0 1 2 0 2 1 2 2

21d d d d d d d d d d dY ε ε ε ε ε ε ε ε ε ε = + + + − − − +
 
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( ) ( ) ( ) ( )( )0 1 0 2 1 2 2

21d d d d d d d dY E E E Eε ε ε ε ε ε ε = + − − +
  

 

2 2 2 2

2 2 2

2

2

/ 2

2

2

11 1 1 1 1 1
1

1 1

d d dd d d d

d d d d d d

d

x y xx y x y d

d x y x y d x y
d d d dd d d d d dd d d d

x

d d d

S S SS S S S v
Y W

N N n NX Y X Y X Yn n n X

S

n N X

ρ ρ ρ
 −      
= + − − − + − −                   

  
+ −  
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Hence Bias of 
2

ˆ
RdY

2 2 2

2 2 2/

11 1 d dd d

d d d d

x yx y d

d x y d x y
dd d d dd d

S SS S v
Y W

nX Y X Yn n
ρ ρ

 −    
= − +         

 

3.2. Mean Square Error (MSE) of the Ratio Estimator 
ˆ

RRRR
1111

dddd
YYYY  

and 
ˆ

RRRR
2222

dddd
YYYY  

The ratio estimator of 
1

ˆ
RdY  and 

2

ˆ
RdY  can be defined as; 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  and 2 /

ˆ
.d

d d d d

d

y
Y x r x

x
= =  respectively  

Proposition 3  

The mean square error (MSE) of the estimator defined by 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  is given by; 

2

21 2

2 2 /

/ /

11 1 1 1
d R R

d

y d d d
d d dd d

v
S S W S

N n nn n

−     
− + − +         

    
 

Where, 

1

2 2 2 2
2

R d d d d d dd y x d x y d x yS S S R R S Sρ= + −  

2 2 2 2 2 2 2

2 2 2 2
2

R d d d d d dd y d x x y d x yS S R S R S Sρ= + −  

With the notations defined as in preposition 1 above and 

dR  =Population ratio of dY  to dX   

Proof 

By definition,  

( )
1 1

2
ˆ ˆ

R Rd d dMSE Y E Y Y = −
  

=

2

/.d
d d

d

y
E x Y

x

 
− 

 
 

Substituting the values of equations (5) we obtain 

( ) ( )
( )

0 2

1

2

1 1

1

d d d d

d

d d

Y X
E Y

X

ε ε

ε

 + +
 = −
 +
 
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0 2

1

2

2
1 1

1
1

d d

d

d

Y E
ε ε

ε

 + +
 = −
 +
 

 

( )( )
2 0 0 2 1 1 1

2
2 21 ...d d d d d d d dY E ε ε ε ε ε ε ε = + + − − + +

 
 

= ( )
0 2 1

22
d d d dY E ε ε ε+ −  

= ( ) ( ) ( ) ( ) ( ) ( )
0 1 2 0 2 0 1 1 2

2 2 2 2 2 2 2d d d d d d d d d dY E E E E E Eε ε ε ε ε ε ε ε ε + + + − −
 

 

=
2 2

2

22 2

2

/ 2 / 2 2

11 1 1 1 dd d
yy y d

d d
d d dd d d d d

SS S v
Y W

N n nn Y n Y Y

 −     
 − + − +              

 

+

2

2

1 1
dx

d d d

S

n N X

 
− 

 
+ 

2

/ 2

1 1 dx

dd d

S

Nn X

 
−  

 
 + 2 2

2

2

2

1
dxd

d
d d

Sv
W

n X

− 
  
 

 

+2 
/

1 1 d d

d d

x y

x y
d d dd

S S

N X Yn
ρ

 
− −  

 
2

1 1
d d

d d

x y

x y
d d d d

S S

n N X Y
ρ

 
− 

 
 

2 2 2

22 2

1
2

d d

d d

x yd

x y d
d d d

S Sv
W

n X Y
ρ

− 
−   
 

2

/ 2

1 1
2 dx

dd d

S

Nn X

 
− −  
 

]  

2 2 2 2

/ / /

1 1 1 1 1 1
d d dy y x d

d d dd d d

S S S R
N n Nn n n

     
= − + − + −          
     
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−  
2 2

/

1 1
dx d

dd

S R
Nn

 
−  

 
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2

2 2 2 2 2

2 2 2
1

2
d d d d d d

d

d y d x x y d x y
d

v
W S R S R S S

n
ρ

− 
 + −    

 
 

+2 
/

1 1
d d d dx y d x y

dd

R S S
Nn

ρ
 

− −  
 

2
1 1

d d d dx y d x y
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R S S
Nn

ρ
 

−  
 

 

{ }2 2 2 2
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1 1 1 1
2

d d d d d d dy y x d x y d x y
d dd d

S S S R R S S
N nn n

ρ
   

= − + − + −      
   
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2

2 2 2 2 2

2 2 2
1

2
d d d d d d

d

d y d x x y d x y
d

v
W S R S R S S

n
ρ

− 
 + −    
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1 1 1 1
d Ry d

d dd d

S S
N nn n

   
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d

d d
d

v
W S

n

− 
  
 

  

Proposition 4 

The mean square error (MSE) of the ratio estimator 
2 /

ˆ
.

Rd d

d

y
Y x

x
=  is given by; 

1

2 /2

/ /

1 1 1 1
d Ry d

d dd d

S S
N nn n

   
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d
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W S
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  
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Where, 

1

/2 2 2 2
2

R d d d d d dd y x d x y d x yS S S R R S Sρ= + +  

/

2 2 2 2 2 2 2

2 2 2 2 2
R d d d d d dd y d x x y d x yS S R S R S Sρ= + +  

With the notations as defined in proposition 1 above 

Proof 

MSE of 
2

ˆ
RdY ( )

2 2

2
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4. Estimation of Sample Size in the 

Presence of Non-Response 

Estimation of domain mean is developed using double 

sampling design based on the technique of sub-sampling of 

both the study and auxiliary variable of the non-response 

with unknown domain size. A study of cost surveys is 

therefore considered where a non-linear cost function is 

employed in obtaining the optimal sample sizes by 

minimizing variance for a fixed cost 

4.1. Optimal Allocation in Double Sampling for the 

Estimation of Domain 

An optimum size of a sample is required so as to balance 

the precision and cost involved in the survey. The optimum 

allocation of a sample size is attained either by minimizing 

the precision against a given cost or minimizing cost against 

a given precision. In this study, a non-linear cost function has 

been considered. 

Denote the cost function for the ratio estimation by 

( )
0 1 1 2 2

/ /
d d d d d d d d dC c n c n c n c r

θ
= + + +          (14) 

Where, 
/
dc  = The cost of measuring a unit in the first sample of 

size 
/
dn   

0dc  =The cost of measuring a unit of the first attempt on 

dy  with second phase sample size dn . 

1dc  = The unit cost for processing the responded data of dy

at the first attempt of size 
1dn . 

2dc  = The unit cost associated with the sub-sample of size 

2dr from non-respondents of size 
2dn   

However the first sample of size 
1dn  and sub-samples of 

size 
2dr  are not known until the first attempt is carried out. 

The cost will therefore be used in the planning for the survey. 

Hence the expected cost values of sizes 
1dn  and 

2dr  will be 

given by; 
1 1d d dn W n=  and 2 2

2

. d
d d

d

n
r W

v
= . Hence the 

expected cost function is; 

*
d dE C C= =    ( )
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/ / d
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c n c n c n c W

v
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*
dC =  ( ) 2
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W
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v

θ  
+ + + 
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  (15) 

4.2. Results for Double Sampling for Domain Estimation in 

the Presence of Non-Response 

Proposition 5  

The variance for the estimated domain mean for the 

estimated domain mean 
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Where, 
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R d d d d d dd y d x x y d x yS S R S R S Sρ= + ±  

Proof  

To determine the optimum values of
2dv , dn and 

/
dn  that 

minimizes variance at a fixed cost, define 

( )dG W 2

21 2

2 2 2

/ /

11 1 1 1
d R R

d

y d d d
d d dd d

v
S S W S

N n nn n

−     
= − + − +         

    
 

( ) 2

0 1 1 2

2

/ / *.
d

d d d d d d d d
d

W
c n n c c W c C

v

θ
λ    

+ + + + −  
   

  (16) 

To obtain the normal equations, the expression of Equation 

(16) is differentiated partially with respect to
2dv , dn and 

/
dn , 

and the partial derivatives are equated to zero 

( ) ( )1

22
1

/ /

/ /2 /2
0

Rd
dyd

d d

d d d

SSG W
c n

n n n

θ
λ θ

−−∂
= + + =

∂
 

( )
1

1
2 2 / /

0
d Ry d d dS S c n

θ
λ

+
= − + + =  

( )
1

1
/ / 2 2

d Rd d y dc n S S
θ

λ
+

= −  

( ) 1

2 2
1

/

/

d Ry d

d

d

S S
n

c

θ

λ θ
+ −

=  

Let 
1

2 2 2
0

d d Ry dS S Sω = − > , thus, 

( )
2

1
/

/

d

d

d

S
n

c

θ ω

λ θ
+

=  

1
1

2 2 1
1

/

/ /

d d

d

d d

S S
n

c c

θθω ω

λ θ θ

++   
 = = ∅      

  

Next the partial derivative with respect to 
2dv  obtained as; 

( ) 2 2 2 2

2 2

2

2
0

Rd d d d dd

d d d

W S c W nG W

v n v

λ∂
= − =

∂
 

2 2 2 2

2

2

2

Rd d d d d

d d

W S c W n

n v

λ
=  

2 2 2 2 2

2 2 2

Rd d d d d dc W n v W Sλ =  

2

2

2R

d d

d
d

n c
v

S

λ
=                                    (17) 

Consider the equation 

( )dG W  
2

21 2

2 2 2

/ /

1 1 1 1 1
d R R

d

y d d d
d d d dd d

v
S S W S

N n n nn n

     
= − + − + −         

    
 

( ) 2

0 1 1 2

2

/ / *
.

d

d d d d d d d d

d

W
c n n c c W c C

v

θ
λ    

+ + + + −  
   

  (18) 

But from (17), 

22

2R

dd

d d

cv

n S

λ
=  

and 

2

2 2

Rdd

d d

Sn

v cλ
=                                 (19) 

Substituting this in Equations (18) we obtain  
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( )dG W
2

21 2

2

2 2 2

/ /

1 1 1 1 1
d R R

R

d

y d d d
d d d dd d

c
S S W S

N n S nn n

λ    
 = − + − + −             

 

( ) 2

0 1 1 2 2

2

/ / *Rd

d d d d d d d d d

d

S
c n n c c W c W C

c

θ
λ

λ
    

+ + + + −   
    

                                      (20) 

The partial derivative of the equation (20) with respect to dn  is obtained as 

( ) ( )21 2

0 1 1

2 2

2 2
0

R Rd d dd
d d d

d d d

S W SG W
c c W

n n n
λ

∂
= − + + + =

∂
 

( )
2 0 1 11 2

2 2 2 0
R Rd d d d d d dS W S n c c Wλ= − + + + =  

( )
0 1 1 21 2

2 2 2

R Rd d d d d d dn c c W S W Sλ + = −  

( )
21 2

0 1 1

2 2

2 R Rd d d

d

d d d

S W S
n

c c Wλ

−
=

+
 

21 1

0 1 1

2 2

R Rd d d

d
d d d

S W S
n

c c W

 −
 = ∅
 +
 

 

Where 
1

λ
∅ =  But 

2

2

2

.

R

d

d d
d

c
v n

S

λ
=  from equation (19)  

Thus,  

( )
( )

21 22

2

0 1 12

2 2

2
.

R R

R

d d dd

d

d d d d

S W Sc
v

S c c W

−
=

+
  

To obtain λ  the values of
2dv , dn and 

/
dn  are substituted in the cost function equation (16) and then solve for the value of λ . 

Suppose the cost function is given by 

*
dC =  ( ) 2

0 1 1 2

2

/ / .
d

d d d d d d d
d

W
c n n c c W c

v

θ  
+ + + 

 
 

Then, 

*
dC =  2 21 2 2 2 1 2

0 1 1

0 1 1 0 1 12

1
2 2 2 22 1

/

/

1 R R R Rd
d d d d d dd d

d d d d
d d d d d dd d

S W S S W SS c W
c c c W

c c W c c Wc c

θθ
ω

θλ λ

+      − −        + + +        + +        

 

( ) 21 2

2 0 1 12

0 1 1

2 22 11 1* /

/

1 1 1 R Rd

R

d d d

d d d d d d d
d d dd

S W SS
C c W S c c W

c c Wc

θθ θ
θθ θω

θ λ λ

++ +
    −       = + + +          +        

                     (21) 

Let, 
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( )
21 1

/ 1 d

d

S
A c

θ
θ

ωθ
θ

+
+
 
 =
 
 

 

( ) 21 2

0 1 1 2 22

0 1 1

2 2

R R

R

d d d

d d d d d d
d d d

S W S
B c c W W S c

c c W

 −
 = + +
 +
 

 

*
dC C=  

The equation (20) becomes; 

1

1 2 0A B C

θ
θλ λ

− −
+ + − =                                                                            (22) 

If θ  = 1 and substituting this value in the equation (20) we obtain a linear equation of the form 

1 1

2 2 0A B Cλ λ
− −

+ − =  

With the values of A  and B  defined as; 

( )
1

21 2
/ 2 d

d

S
A c

ω

θ

 
 =
 
 

, ( ) 21 2

0 1 1 2 22

0 1 1

2 2

R R

R

d d d

d d d d d d
d d d

S W S
B c c W W S c

c c W

 −
 = + +
 +
 

 and *
dC C=  

Solving the linear equation solution obtained is, 

A B

C
λ +=  

When 1

3
θ =  and substituting this value in the equation (22) 

we obtain a linear equation of the form, 

1 1

4 2 0A B Cλ λ
− −

+ − =                              (23) 

With the values of A  defined as; 

( )
1

21 2
/ 2 d

d

S
A c

ω

θ

 
 =
 
 

 

While B  and C  remains as earlier defined 

Solving the equation (23) solution obtained is, 

( )
4

2

2

4

A

B AC B

λ
 
 

=  
+ − 

 

 

Proposition 6  

If the expected cost function is of the form *
dC =  

2

0 1 1 2

2

/ /log .
d

d d d d d d d

d

W
c n n c c W c

v

 
+ + + 

 
 then the variance of 

the estimated domain mean dy  is minimum for a specified 

cost *
dC  if; 

2

/

/

d

d

d

S
n

c

ω

θ

 
 = ∅
 
 

 

( )
( )

21 2

0 1 1

2 2

R Rd d d

d

d d d

S W S
n

c c W

−
= ∅

+
 

( )
( )

21 22

2

0 1 12

2 2

2
.

R R

R

d d dd

d

d d d d

S W Sc
v

S c c W

−
=

+
 

Where, 

1

λ
∅ =  

Proof 

The proof for dn  and 
2dv is the same as the one in 

proposition 5 above. For 
/
dn  the Lagrangian multiplier 

technique is used. 

Let, 

( )dG W 2

21 2

2 2 2

/ /

11 1 1 1
d R R

d

y d d d
d d dd d

v
S S W S

N n nn n

−     
= − + − +         

    
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2

0 1 1 2

2

/ / *log .
d

d d d d d d d d
d

W
c n n c c W c C

v
λ    

+ + + + −  
   

  (24) 

To obtain the normal equations for the expression (24) the 

equation is differentiated partially with respect to 
/
dn  and the 

partial derivatives are equated to zero 

( )
1

22 /

/ /2 /2 /
0

Rd
dyd d

d d d d

SSG W c

n n n n

λ−∂
= + + =

∂
 

1

2 2 / /
0

d Ry d d dS S c nλ= − + + =  

1

/ / 2 2

d Rd d y dc n S Sλ = −  

1

2 2

/

/

d Ry d

d

d

S S
n

cλ

−
=  

But, 
1

2 2 2
0

d d Ry dS S Sω = − > , thus, 

2 2

/

/ /

d d

d

d d

S S
n

c c

ω ω

λ

 
 = = ∅
 
 

 

1

λ
∅ =   

To solve for λ , let the variance be given as 0V  then 

substitute the values of
2dv , dn and 

/
dn  into the equation, 

( )dG W 2

21 2

2 2 2
0/ /

11 1 1 1
d R R

d

y d d d
d d dd d

v
S S W S V

N n nn n

−     
= − + − + =         

    
 

2

21 2

2 2 2
0/ /

11 1 1 1
0

d R R

d

y d d d
d d dd d

v
S S W S V

N n nn n

−     
= − + − + − =         

    
 

( ) ( )2 2 21 1 2 2

2

2 2 2 2 2
0/

1 1
0d

d R R R R

y

y d d d d d d d
d dd

S
S S S W S v W S V

n Nn

  
 = − + − + − + = 
    

              (25) 

 

Substitute the values of 
2dv , dn and 

/
dn  into the equation (25) and simplify to obtain, 

( )( )
2 0 1 1 2 21 2 2

/ 2 2 2 *
0

R R Rd d d d d d d d d d dc S W S c c W W S c Vλ λ  + − + + − = 
 

                                     (26) 

Let, 

*
dV  

2

0
dy

d

S
V

N

 
 = +
 
 

, /
dA c=  and ( )( )

2 0 1 1 2 21 2 2

2 2 2

R R Rd d d d d d d d dB S W S c c W W S c= − + +  

Thus equation (26) becomes, 

1

*2 0dA B Vλ λ+ − =
                             

 (27) 

Solving for λ  in equation (27) the solution becomes, 

( )
1

22 4

2

B AC B

A
λ

 + − 
=  
 
 

  

5. Conclusion 

From the results it is noted that as values of first sample 

domain size (
/
dn ) tends to ( )→ domain population size ( dN ), 

second sample size ( dn ) tends to ( )→ /
dn  and inverse 

sampling rate ( 
2dv ) tends to ( )→  1 then the MSE tends 

asymptotically to 0. From theoretical analysis it is observed 

that the Mean Square Error of the proposed estimator will 

decrease as the sub-sampling fraction together with the 

number of auxiliary characters is increased. As the sub-

sampling fraction also increases and the value of θ  increases 

then the values of 
/
dn and dn are minimized with the 

reduction in the value of Lagrangian multiplier ( λ ) which 

minimizes the cost function. 
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