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Abstract: Taxation is one of the means by which governments finance their expenditure by imposing charges on citizens and 

corporate entities. Kenya Revenue Authority (KRA) is the agency responsible for the assessment, collection and accounting for 

of all revenues that are due to government. Volatile government revenue is a challenge for fiscal policy makers since it creates 

risks to government service provision and can make planning difficult, as revenue falls short of expenditure needs both 

frequently and unexpectedly. The main objective of this study was to model and forecast the volatility of VAT revenue 

collected in Kenya as well as computing its value at risk and the expected shortfall. Secondary data on daily VAT revenue 

collections for a period of 3 years was analyzed. The first step was to model the mean equation of the return series using the 

ARIMA model and ARIMA(3,0,3) was identified to be the most suitable since it had the least values of AIC and BIC. The 

Lagrange Multiplier test confirmed the presence of ARCH effects using the residuals of the mean equation. A number of 

heteroscedastic models were fitted and the TGARCH family (ARIMA(3,0,3)/TGARCH(1,2)) was preferred to fit the volatility 

of the returns. One step ahead forecasting of volatility of the returns was done using the model which gave a value of 7.212. 

Estimation of value at risk and expected shortfall involved use of POT method by fitting a GPD function to the return data 

series. The first step was determination of threshold by use of MRL plot and later fitting a GPD function to the return data 

series using the threshold. The shape, location and scale parameters were estimated using MLE and they were later used to 

compute the VaR loss and ES at 95% and 99% confidence intervals. The VaR at 95% and 99% was 1.45% and 1.49% 

respectively while the ES at both the intervals was 0.04% and 0.1% respectively. This study concluded that volatility is 

persistent in the daily VAT revenue collections and it can easily be modelled using conditional heteroscedastic models. 

Keywords: Autoregressive Conditional Heteroscedasticity (ARCH), Expected Shortfall (ES),  

Threshold Generalized Autoregressive Conditional Heteroscedasticity (TGARCH), Value at Risk (VaR) 

 

1. Introduction 

Revenue volatility can be defined as the extent of revenue 

fluctuation over the course of the business cycle. It is a 

serious concern particularly for state policymakers and fiscal 

administrators operating within the context of balanced 

budget requirements. It makes it hard to make accurate 

forecasts for future revenues and the establishment of long-

term fiscal plans for the stable operation of public programs 

and services. With the global economy being liberalized and 

more tightly interwoven, the tax environment of governments 

has been increasingly volatile and uncertain over the past 

years, and as a result, fiscal planning and management have 

become more challenging particularly for state governments 

operating under the institutional constraints of balanced 

budget requirements. 

The important implication of revenue volatility for state 

finance is that in the absence of adequate fiscal reserves, it is 

hard for states with volatile revenue bases to avoid massive 

spending cuts and tax hikes in times of economic crisis when 

governments counter cyclical fiscal actions are needed more 

than ever. Another implication is that such pro-cyclical 

austerity measures affect real economies, reducing 

households and businesses’ propensity to consume and 

consequently creating the vicious circle of economic 

recession. 
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Capturing revenue volatility is very important. Looking at 

the perspective of a prospective planning, if we desire to 

make decisions about the structure our revenue sources on 

which we will rely on to provide sufficient revenue for all 

essential government services, we should consider both the 

mean rate of growth of the revenue sources and the volatility 

as well. Also, revenue volatility can be used as an 

independent variable in developing an understanding about 

past decisions such as revenue structure, the use of rainy day 

funds, or state borrowing trends among others. 

A study was carried out on the importance of considering 

tax portfolios and economic conditions in determining the 

growth rate and volatility of state tax revenues. Using 1989 – 

2009 state data and simple graphical constructs, various 

comparative analysis of the long-run growth rate and short-

run volatility in percent changes of state economies and tax 

revenues and state tax portfolios were constructed. In the 

analysis, it was found that wide variations in these respects 

exist among states. Other findings suggested that in the short 

run, states cannot alter the underlying structure of the 

economy but can mitigate the impacts of the business cycle 

on their fiscal conditions by making changes to their tax 

portfolios [1]. 

Tax analysis and revenue forecasting are very essential in 

providing directions as to enhancing tax revenue, improving 

equity and efficiency of taxes, promoting investments and 

consequently economic growth with a view of increasing 

national income. In addition, it is important in monitoring 

processes and budget planning. It defines the resource 

envelope forming the basis for effective medium-term and 

long-term planning [2]. 

Revenue forecasting is an essential part of budgeting in the 

public sector. Therefore, it is necessary for a government to 

forecast the revenue it collects for planning purposes. 

Budgetary uncertainties have led to increased reliance on 

economic and revenue forecasting by state governments in 

recent years. Because of the magnitude of the fiscal problems 

facing many states, forecasting has assumed a more central 

role in the policy making process. As a result, revenue 

forecasts are closely examined and accuracy is essential for 

planning purposes. To improve accuracy, there is need for 

analysts to assemble as much information about their 

respective state economies as possible, including formal and 

informal consideration of alternative forecasts [2]. 

In Kenya, the tax revenue analysis and forecast is 

produced by a single agency, which is the Ministry of 

Finance in conjunction with the Kenya Institute for Public 

Policy Research and Analysis (KIPPRA). The ministry 

formulates the government budget by undertaking revenue 

projections and at the same time prepares the monthly/annual 

revenue targets for relevant revenue collection agencies in 

the country. VAT in Kenya is usually a tax on consumption, 

therefore its volatile depending on the economic seasons. The 

purpose of this project was to make use of heteroscedastic 

models to model and forecast the volatility of the VAT data 

series. The study also looked at the risks associated with the 

VAT by estimating its Value at Risk (VaR) and the Expected 

Shortfall (ES). 

2. Methodology 

Time series analysis is the procedure of fitting a time 

series to a proper model. It comprises methods that attempt to 

understand the nature of the data series and its characteristics 

which include trend, seasonality, outliers and cycle. When 

modeling the volatility of a return series, a mean equation is 

needed for testing the arch effects. ARMA or ARIMA models 

can be used to model the mean equation 

2.1. Autoregressive Integrated Moving Average (ARIMA) 

From application view point ARMA models are not the 

best to properly describe non-stationary time series, which 

are frequently encountered in practice. For this reason, the 

ARIMA model was proposed, which is an extension of an 

ARMA model to include the case of non-stationary data as 

well. In ARIMA models a non-stationary data is made 

stationary by applying finite differencing of the data points 

[3]. 

A time series model y� is an ARIMA model of order p, d, 

q, i.e. ARIMA(p, d, q), if y�� =	α�	 + α	y�
	� + α�y�
�� +⋯+ α
y�

� + ε�+β	ε�
	 +ε� + β�ε�
� +⋯+ ε� + β�ε�
�                              (1) 

Where 

a) y��  is the differenced series (it may have been 

differenced more than once). 

b) ε�′s  are random errors (or random shocks) at time 

period t. 

c) α	(i = 1,2, …p)  and β(i = 1,2, … q)  are model 

parameters. 

d) α�	is a constant. 

2.2. Heteroscedastic Models 

Volatility modeling provides an approach of calculating 

Value at Risk (VaR) of a financial position in risk 

management. Building a volatility model for a return series 

involves the following steps: 

i Specifying of a mean equation by testing for serial 

dependence in the data series. If need be, build an 

econometric model for the return series so as to be 

used to remove any linear dependence.  

ii Use of the squared residuals of the mean equation to 

test for ARCH effects. 

iii Specifying of a volatility model if ARCH effects are 

statistically significant and performing a joint 

estimation of the mean and volatility equations. 

iv Checking the fitted model carefully and refining it if 

necessary. 

2.2.1. Testing for ARCH Effects 

Let a�	 = y� −	u�	  be the residuals of the mean equation. 

The squared series a��  is used to check for conditional 

heteroscedasticity (ARCH effect). This can be done using the 



 Science Journal of Applied Mathematics and Statistics 2019; 7(1): 1-7 3 

 

Lagrange multiplier test which is equivalent to the usual F 

statistic for testing α�		(i = 1,2, …m) in the linear regression. 

a�� =	α� +	α	a�
	� +⋯+ α!a�
!� +	e�, t = m + 1,⋯ , T	 (2) 

Where; 

i e� denotes the error term. 

ii m is a pre-specified positive integer. 

iii T is the sample size. 

This gives us  

F = (&&'(	
	&&'))/!&&')/(+
�!
	)                            (3) 

Which is asymptotically distributed as chi-squared 

distribution with m degrees of freedom under the null 

hypothesis. This test is known as Lagrange multiplier test. 

2.2.2. The ARCH Model 

The first model that provides a systematic framework for 

volatility modeling is the ARCH model of [4]. The basic idea 

of ARCH models is that: 

i The mean corrected asset return a�  is serially 

uncorrelated, but dependent. 

ii The dependence of a�  can be described by a simple 

quadratic function of its lagged values. 

Specifically, an ARCH (p) model assumes that a� = σ�	ϵ�                               (4) σ�� =	α� + α	a�
	� +⋯+ α
a�

�                (5) 

Where  

i ϵ�	 is a sequence of independent and identically 

distributed (iid) random variables with mean zero and 

variance 1. 

ii α� > 0 and α� ≥ 0 for i>0. 

2.2.3. The GARCH Model 

Although the ARCH model is simple, it requires many 

parameters to adequately describe the volatility process of an 

asset return. A useful extension known as the generalized 

ARCH (GARCH) model was therefore proposed [5]. For a 

log return series y�, it’s assumed that the mean equation of 

the process can be adequately described by an ARMA model. 

Let a� = y� − u�  be the mean corrected log return. Then a� 
follows a GARCH (m,s) model if  a� = σ�	ϵ�                                (6) σ�� =	α� +	∑ α�!�2	 a�
�� +	∑ β3	σ�
3�432	          (7) 

Where 

i ϵ�	 is a sequence of independent and identically 

distributed (iid) random variables with mean zero and 

variance 1. 

ii α� > 0, α� ≥ 0	β3 ≥ 0. 

iii ∑ 5α� + β36!78	(9,:);2	 	< 1. ϵ� is often assumed to be a standard normal or standardized 

Student-t distribution. 

2.2.4. The TGARCH Model 

This is one of the models used to handle leverage effect 

[6]. A TGARC H (m, s) model assumes the form σ�� =	α� +	∑ (α� + γ�	N�
�)4�2	 	a�
�� + ∑ β3σ�
3�!32	     (8) 

Where 

i N�
� = 1	if	a�
	 < 0. 

ii N�
� = 0	if	a�
	 ≥ 0. 

iii α�, β3	and	γ�	 are non-negative parameters satisfying 

conditions similar to those of GARCH models. 

From the model, it is seen that a positive aB
; contributes α�	aB
;�  to σ��  whereas negative aB
;  has a larger impact (α� + γ�	)aB
;�  with 	γ� > 0 . The model uses zero as its 

threshold to separate the impacts of past shocks. This model 

is preferred over the others because it allows the asymmetric 

effects between positive and negative asset returns [7]. 

Model Selection Criteria 

Both AIC and BIC were used in the model selection. These 

can be expressed as; 

AIC = −2lnL + 2k                            (9) 

BIC = −2lnL + 2lnNk                    (10) 

Where; 

i L is the maximized value of the likelihood function ii. 

N is the number of recorded measurements. 

ii k is the number of estimated parameters. 

Existing studies shows that AIC is not consistent and has 

the tendency to choose models which are over-parameterized. 

Forecast Evaluation 

The mean absolute error (MAE) and the mean square error 

(MSE) were used as measures for evaluating forecasting 

performance. The MAE and MSE for n step ahead forecast 

are denoted as follows 

MAE(n) = 	 	F 	∑ G	5rI�JKL − r̅6� −	h�O (n)GF�2	       (11) 

MSE(n) = 	 	F∑ Q5rI�JKL − r̅6� −	h�O (n)R�F�2	      (12) 

Where; 

i rBJS is the return over horizon n steps ahead at current 

time t.  

ii r̅	is the mean of return. 

iii h�O (n)	 is the forecasted conditional variance over 

horizon n steps ahead at current time t. 

2.3. Value at Risk (VaR) and Expected Shortfall (ES) 

One way of modeling VaR and ES by is applying extreme 

distribution based on methods such as Extreme Value Theory 

(EVT). EVT refers to branch of statistics which normally 

deals with the extreme deviations from the mean of a 

probability distribution. Results in EVT can be obtained 

either using Block Maxima model (BMM) or Peak Over 

Threshold model (POT). POT method models a distribution 

of excess over a given threshold. EVT shows that the limiting 

distribution of excess is a Generalized Pareto Distribution of 

GPD [8]. 
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The POT method uses available data more efficiently 

compared to BMM. In POT, all the data which exceeds a 

particular threshold level is used while in BMM only the 

maximum from a block length is retained for distribution 

estimation. 

2.3.1. GPD and EVT 

The generalized Pareto distribution (GPD) is a family of 

continuous probability distributions. It is often used to model 

the tails of another distribution. It is specified by three 

parameters: location µ, scale β, and shape parameter ξ. 

The two-parameter GPD (with scale parameter β and shape 

parameter ξ) has the following representation: 

G	IU,VL(W) = X1 −	Y1 + UVZ
)[ 					ξ ≠ 01 −	e
_̂																	ξ = 0               (13) 

Where 

i y > 0 when ξ ≥ 0. 

ii 0 ≤ y ≤ −β/ξ when ξ < 0. 

iii β > 0. 

2.3.2. Peaks Over Threshold (POT) 

To fit a GPD to our data set, adoption of the POT method 

that focuses on the distribution of excess above some high 

threshold is made. For y − u ≥ 0 the excess distribution 

function can be rewritten as 

F`(W
`) = a(W)
a(`)	
a(`)                            (14) 

and hence deduce the following reverse expression F`(W) = 51 − F(u)6	F`(y − u)F(u)                 (15) 

which allows us to apply the POT method. There are two 

steps in applying the POT method. First is to choose an 

appropriate threshold and then fit the GPD function to data 

[9].  

2.3.3. Mean Excess Function and Threshold Selection 

For a random variable Y, the mean excess function is 

defined as e(u) 	= 	E(Y − u|Y	 > 	u)                    (16) 

i.e. the mean excess over a threshold u. If the underlying 

distribution Y > u follows a GPD, then the corresponding 

mean excess is 

eK(u) = VJU`	
U 	β + 	ξu > 0	                   (17) 

provided ξ < 1. From the equation it’s clearly seen that the 

mean excess function must be linear in u. More precisely, Y > 

u follows a GPD if and only if the mean excess function is 

linear in u. This gives us a way of selecting an appropriate 

threshold. 

2.3.4. Model Validation 

Quantile plots can be used to assess the quality of a fitted 

generalized Pareto model. If GPD is a reasonable fit for the 

excess above u, then the Q-Q plot should depict points that 

are approximately linear. Furthermore, the goodness-of-fit of 

GPD can be confirmed by utilizing the excess distribution 

plot and plot of the tail of underlying distribution. For a good 

fit, the excess should lie close to the theoretical curves. 

Lastly, a scatter plot of residuals should not depict any visible 

pattern to indicate independence of the excess. 

2.3.5. VaR 

For a random variable Y (usually the return in some risky 

financial instrument) with distribution function F over a 

specified time period, the VaR, for a given probability p, can 

be defined as the p
th

 quantile of F, i.e., VaR
 =	F
	(1 − p)                     (18) 

where F
		 is the quantile function. VaR is a common 

measure of extreme risks and GPD is used to approximate 

this measure. In particular, using Equation of POT the 

following is obtained. 

VaR
f =gh
iμ + VOUk 	I	l KFm Po
Uk − 1L								ξ ≠ 0μ − βk	log l KFm (1 − P)o 					ξ = 0     (19) 

Where 

i β and ξ are the maximum likelihood estimates of the 

GPD parameters. 

ii n is the total sample size. 

iii Nu is the amount of observations above the chosen 

threshold. 

2.3.6. ES 

ES was proposed as a better measure of risk, which is sub-

additive and also informs us about the likely magnitude of 

excess [10]. In contrast to VaR, ES is used measure the 

riskiness of an instrument by considering both the size and 

likelihood of losses above a particular threshold. ES gives the 

expected size of return that exceeds VaR. ESs = E(Y	|Y > VaR
	                      (20) 

And equivalently ES
 =	VaR
 	+ 	E(Y − VaR
|Y > VaR
)     (21) 

where the second term above represent the mean of the 

excess distribution. Proceeding as before, if the threshold VaR
	is sufficiently large then the expected shortfall can be 

computed as follows. 

ES
t =	u7'vf	
	Uk +	VO
Uwt	
	Uk 	                     (22) 

3. Results and Discussion 

Secondary data of the daily VAT revenue collections from 

January 2016 to March 2019 was used for this research. 
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Figure 1. Daily VAT Collection Plot. 

Figure 1 shows volatility clustering of the VAT revenue 

collections. It is noticeable that periods of low volatility are 

followed by periods of low volatility and periods of high 

volatility followed by periods of high volatility as well. The 

periods of high volatility are few days prior to the due date of 

payment. During these days, payments tend to increase with 

the highest payment being made on the due date of the 

month. After the due dates, the amounts of payments reduces 

drastically and the collections made in the proceeding days 

are usually low. 

These VAT payments were converted in to their log returns 

and a time plot of the return series is as shown in Figure 2. 

 

Figure 2. A plot of daily VAT returns 

3.1. ARIMA Modeling 

3.1.1. Stationary Test 

The aim of this test was to check the presence or absence 

of unit root, where the null hypothesis is stated by default as 

the presence of unit root and the alternative hypothesis as 

absence of a unit root. Augmented Dickey Fuller (ADF) was 

used to test if data was stationary and produced the following 

results. 

Table 1. Stationary Test using ADF. 

Test p-value 

ADF 0.0000 

Since the p-value is less than 0.05 significance level, we 

reject the null hypothesis and hence conclude that the returns 

data series is stationary. The series was later modeled using 

ARIMA models and checked for the arch effects. 

3.1.2. Model Selection 

Various ARIMA models were fitted to the differenced 

series and selection was made using the AIC and BIC values. 

The model with the lowest values of AIC and BIC is 

preferred.  

Table 2. Model Selection with AIC and BIC. 

Model BIC AIC 

ARIMA(2,0,1) 5583.38 5558.06 

ARIMA(2,0,2) 5560.27 5529.88 

ARIMA(2,0,3)  5567.33 5531.87 

ARIMA(3,0,1) 5589.54 5559.16 

ARIMA(3,0,2) 5567.32 5531.87 

ARIMA(3,0,3) 5443.68 5403.16 

From table 2, the ARIMA (3,0,3) is preferred to be the best 

model since it has the least values of AIC and BIC. 

3.2. Heteroscedastic Modeling 

3.2.1. Testing for ARCH Effects 

This was done using the residuals of the mean equation. 

Using the squared residuals, Lagrange Multiplier (LM) test 

was used to test for the arch effects and the results obtained 

are as follows. 

Table 3. Lagrange Multiplier Test. 

Test df p-value 

LM 12 0.0000 

The null hypothesis is that there is no arch effects. From 

table 3, the p-value obtained was less than 0.05. Therefore, 

the null hypothesis is rejected and a conclusion is made that 

there is presence of arch effects. 

3.2.2. Model Selection 

After confirming the presence of arch effects in our return 

data series, various ARIMA (3,0,3)/GARCH (p,q) as well as 

ARIMA(3,0,3)/EGARCH(p,q) and ARIMA(3,0,3)/TGARCH 

(p,q) models were considered for modelling the VAT returns 

and selection was made based on the values of the AIC and 

BIC. 

Table 4. TGARCH Model Selection using AIC and BIC. 

Model AIC BIC 

ARIMA(3,0,3)/GARCH(1,1) 4.630 4.677 

ARIMA(3,0,3)/GARCH(1,2) 4.624 4.676 

ARIMA(3,0,3)/EGARCH(2,1) 4.483 4.538 

ARIMA(3,0,3)/EGARCH(1,1) 4.492 4.548 

ARIMA(3,0,3)/TGARCH(1,2) 4.627 4.679 

ARIMA(3,0,3)/TGARCH(2,1) 4.462 4.518 

From table 4 above, it is evident that the best model is 

ARIMA(3,3)/TGARCH(1,2) since it had the lowest value of 

AIC and BIC using student-t distribution. 
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3.2.3. Parameter Estimation 

Using maximum likelihood estimation, the parameters of 

our chosen model were estimated and the results obtained are 

as shown in table 5.  

Table 5. ARIMA(3,3)/TGARCH(1,2) Parameter Estimates.. 

Parameter Estimate Standard Error p-value φ	 0.273657 0.016606 0.000000 φ� -0.678428 0.007762 0.000000 φy 0.635825 0.016686 0.000000 θ	 -0.597181 -0.597181 0.000000 θ� 0.537376 0.000742 0.000000 θy -0.910576 0.000163 0.000000 

α� 1.579987 0.106565 0.000000 

α	 0.559060 0.060202 0.000000 

β	 0.793704 0.029057 0.009586 

β� 0.000002 0.031248 0.999994 

γ 1.000000 0.059067 0.000000 

From table 5, the p-values of most of the parameters is less 

than 0.05 which indicates that they are statistically significant 

while few are greater than 0.05. The value of γ is positive 

which implies that negative events will have more impact on 

the volatility of the returns than positive events. 

3.2.4. Forecasting 

Using the TGARCH model, one step ahead forecast of the 

VAT returns was done and the results are as shown in table 6 

Table 6. Volatility Forecasting. 

Day Series Sigma 

First 2.314 7,212 

3.3. Estimation of Value at Risk (VaR) and Expected 

Shortfall (ES) 

This was done using the extreme value theory by using 

GPD function. 

3.3.1. Determination of Threshold 

Before fitting the GPD function to the data, it is first 

necessary to choose a threshold. Mean Residuals life (MRL) 

plot of the return data series was used to estimate the 

threshold as shown in figure 3 

 

Figure 3. Mean Residuals Life plot. 

Since the idea is to select a threshold whereby the graph is 

linear, a threshold of 0.1 appears to be a reasonable value 

since a reasonably straight line could be placed within the 

uncertainty bounds from this point up. 

3.3.2. Estimation of GPD Parameters 

The next step was to estimate the scale parameter σ and the 

shape parameter ξ by fitting a GPD function to the data 

series. Maximum likelihood estimate of the parameters was 

obtained and the results are as shown in table 7. 

Table 7. GPD Parameter Estimation. 

Parameter Estimate SE 

Scale (σ) 1.0014385 0.14203701 

Shape (ξ) 0.4558911 0.08111279  

Location (µ) -0.7932478 0.10900623 

These values obtained were used to estimate the values of 

VaR and ES losses.  

3.3.3. Model Adequacy 

To assess the quality of the fitted model, various plots 

were used. These are excess distribution plot, tail of 

underlying distribution plot, scatter plot of residuals and Q-Q 

plot of residuals. 

 

Figure 4. GPD Model Validation Plots. 



 Science Journal of Applied Mathematics and Statistics 2019; 7(1): 1-7 7 

 

 

From figure 4, the top plots from the left are excess 

distribution plot and plot of tail underlying distribution 

respectively. These plots show that the excess lie close to the 

theoretical curves. Scatter plot of the residuals does not 

depict any visible pattern in the residuals which indicate 

independence of the excess. Again the Q-Q plot depicts 

points which approximately linear. Therefore, all of the 

above plots confirmed the goodness of fit of our model. 

3.3.4. VaR Computation 

After confirming the goodness of fit of our model, the VaR 

was computed making use of the GPD parameters that were 

obtained through MLE. VaR was computed at 95% and 99% 

confidence interval and the results obtained were as shown in 

table 8. 

Table 8. VaR Estimates. 

CI Estimate 

0.95 -1.454972 

0.99 -1.488373 

Table 8 shows that we are 95% and 99% confident that the 

worst loss of daily VAT collection will not exceed 1.45% and 

1.49% respectively. 

3.3.5. Estimation of Expected Shortfall 

The ES was estimated in a similar way as the VaR by 

fitting GPD function to the data series. The scale parameter, 

shape parameter and the location parameter obtained by MLE 

from the GPD function together with the VaR estimated were 

used to compute the ES at different confidence intervals and 

the results obtained as in the table below  

Table 9. ES Estimates. 

CI Estimate 

0.95 -0.038158 

0.99 - 0.096084 

Since ES is normally the expected loss of a return that 

exceeds VaR, we can conclude from Table 9 that if the VaR 

loss of our return becomes 1.45% at 95% confidence interval, 

then the worst loss on daily VAT collection will not exceed 

beyond 0.038%. Similarly if the VaR loss at 99% confidence 

interval is 1.49%, then the worst loss on daily VAT collection 

will not exceed beyond 0.096%. 

4. Conclusions and Recommendation 

4.1. Conclusions 

This research study investigated the best model to capture 

the volatility of daily VAT revenue collected in Kenya from 

January 2016 to March 2019. Different statistical tests were 

carried out on the data so as to determine the best model to fit 

the returns. The analysis showed presence of components 

such as trend, seasonal variation and random changes. 

Because of these, it was possible to model the data using time 

series ARIMA(3,0,3) model. The results showed that 

volatility was persistence in the VAT returns. 

ARIMA(3,0,3)/TGARCH(1,2) was identified as the best 

model to forecast the volatility of the revenue returns. Going 

further, the study estimated the market risks associated with 

the revenue returns. These were Value at Risk and the 

Expected Shortfall. Using Peak Over Threshold method of 

the Extreme Value Theory, various parameters that are 

required were computed by fitting a Generalised Pareto 

Distribution function in the data. These were then used to 

estimate the value of the risks (losses) at various confidence 

intervals. 

4.2. Recommendations 

The general recommendation goes to the future researchers 

to examine the effectiveness of other heteroscedastic models 

like EGARCH, IGARCH and GARCH-M in modeling and 

forecasting of revenue volatility. Also, other methods of risk 

measures like use of block maxima model (BMM) and 

GARCH model can also be looked at and a comparison made 

between the different methods. Future research can also look 

at other tax revenues and expenditure as well. 
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