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Abstract: Subjective selection of weights in method of combining objective functions in a multi – objective programming 

problem may favour some objective functions and thus suppressing the impact of others in the overall analysis of the system. It 

may not be possible to generate all possible Pareto optimal solution as required in some cases. In this paper we develop a 

technique for selecting weights for converting a multi-objective linear programming problem into a single objective linear 

programming problem. The weights selected by our technique do not require interaction with the decision makers as is 

commonly the case. Also, we develop a technique to generate all possible Pareto optimal solutions in a multi-objective linear 

programming problem. Our technique is illustrated with two and three objective function problems. 

Keywords: Multi-objective, Single Objective, Linear Programming, Pareto Optimal Solution, Weight,  

Non-inferior Solution 

 

1. Introduction 

There is increasing interest in research in the area of multi-

objective programming. [1] presents an alternative method 

based on fuzzy programming for solving multi-objective 

linear bi-level multi-follower programming problem in which 

there is no sharing of information among followers; a multi-

objective programming model for selecting third – party 

logistics companies and suppliers in a closed-looped supply 

chain was proposed in [2-3] proposed a fuzzy robust 

programming approach to multi-objective portfolio 

optimization problem under uncertainty and lot more. 

A feasible solution to a multi-objective linear 

programming problem is considered to be optimal if it is 

better than any other feasible solution for all linear 

programming problems that constitute the multi-objective 

programming problem. But such an optimal solution to a 

multi-objective programming problem does not always exist 

and we must compromise in our analysis of the problem. We 

desire to obtain variety of good, but not necessarily optimal 

solutions. 

A good but, not necessarily optimal solution to a multi-

objective linear programming problem is known as efficient 

or non-inferior or Pareto optimal solution. In other words, a 

solution to a multi-objective linear programming problem is 

said to be efficient if it is not possible to improve some 

objective function values at expense of others. Such solutions 

are infinitely many and so interest is always on generating 

some of them. 

Generally, solution methods of multi-objective linear 

programming problems may be classified into three groups, 

viz:priori, interactive, and posterior methods [4]. In a priori 

method, the decision maker states his preferences before 

selecting weights to combine several objectives function to 

form single objective function. The pitfall of this method is 

that it is not easy for the decision maker to accurately 

quantify his preferences prior to optimization [5]. 

In the interactive method, the full preference structure of 

the decision maker is not postulated a priors but is implicitly 

revealed in response to a simple question and answer 

procedure with the decision maker. Interactive method is 

characterized by phases of decision making alternating with 

phases of computation. The problem with this method is that 

the decision maker never sees the whole picture of the 

optimal solution set, so his decisions are dependent on what 

he already preferred at each stage of the optimization 
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process. For detail interactive methods the reader is referred 

to [6-13] 

In the posterior method, all the solutions are generated and 

presented before the decision maker who will either accept or 

reject it [14]. This method has advantage over the other two 

in the sense that the decision maker may or may not be 

present while the optimization procedure is ongoing and no 

potential optimal solution will be left out. A simplex based 

approach known as non-dominance subroutine to determine 

all non-inferior basic solutions to multi-objective 

programming problems was developed in [15]. The problems 

with the simplex based approach are that, it is too lengthy 

and requires a lot of bookkeeping. 

In most cases, method of converting multi-objective linear 

programming problem into a single objective linear 

programming problem is often used because the solution 

procedure is already known. Subjective selection of weights 

in method of combining objective functions may favour some 

objective functions and thus suppressing the impact of others 

in the overall analysis of the system. It may not be possible to 

generate all possible Pareto optimal solution as required in 

some cases. 

In this paper we present a technique for weights 

determination that does not involve interaction with the 

decision maker while the optimization process is ongoing, 

and also the procedure for the generation of all Pareto 

optimal solutions is presented. 

2. Methodology 

2.1. General Multi-objective Linear Programming Problem 

The general Multi-objective linear programming problem 

is stated as 

P1 

n

1 1j j
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2.2. Weights Determination 

Selecting adequate weights in multi-objective linear 

programming problem is not always easy. One method of 

doing this is through the use of utility function. If utility 

function U(x) is known, one can select weight wk through 

k
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[16] proposed the following utility functions 
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Theorem 1: 

Let x
k
, k = 1, 2,..., p be optimal solutions to p single 

objective linear programming problems LP1, LP2,..., LPp, 

respectively. Let 
k k k
1 2 p(z ,  z ,   , z )⋯ , k = 1, 2,..., p be the 

corresponding points in the objective function space. Then 

the appropriate weights wk, k = 1, 2,..., p to be attached to Zk, 

k =1, 2,..., p that will give additional Pareto optimal solution 

are given by 

k p

k 1

1k

1k

C
w   , k  1, 2, . . . , p

C

=

= =

∑
             (6) 

Proof: 

First, we consider a two objective functions case (i.e p = 

2). Let x
1
 and x

2
 be the optimal solutions to single objective 

linear programming problems LP1 and LP2, respectively. Let 
1 1
1 2(z ,  z )  and 

2 2
1 2(z ,  z ) be the corresponding points in the 

objective function space. Then the line segment joining these 

points is given as 

2 1
2 2

1 22 1
1 1

z
z    z

z

z
z

z

−
= +

−
                        (7) 

Now adding the coefficients of Z1 and Z2 in equation (7), 

we obtain 

2 1 2 1 2 1
2 2 2 2 1 1
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z z

z z z
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− − + −
+ =

− −
 

After a little rearrangement, we obtain 
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Clearly, 
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To ensure that w1 and w2 are nonnegative, we set 

2 1
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Where C1k, k =1, 2 are the cofactors of the elements in row 

1 of the matrix 

1 1
1 1 2 2

2 1 2 1
1 1 2 2

z z z z
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Now, for p =3, let x
1
, x

2
 and x

3
 be optimal solutions to the 

three single objective linear programming problems LP1, LP2 

and LP3, respectively. 

Let 
1 1 1
1 2 3(z ,  z ,z ) , 

2 2 2
1 2 3(z ,  z , z ) and 

3 3 3
1 2 3(z ,  z ,z )  be the 

corresponding points in the objective function space. Then 

the plane passing through these points is given by the 

equation 

1 1 1
1 1 2 2 3 3
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                 (11) 

Evaluating the determinant in equation (11), we obtain the 

equation of the plane as 

11 1 12 2 13 3c   c   c   dz z z+ + =                 (12) 

Where 
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and C1k, k =1, 2, 3 are the cofactors of the elements in row 1 
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Dividing equation (10) through by (c11 + c12 + c13), we 

obtain 

1 1 2 2 3 3  w   w   dw z z z ′+ + =                         (13) 

Where 

1k
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d
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To ensure that wk is nonnegative, we set 

1k

11 12 13

c
  kw

c c c
=

+ +
, k = 1, 2, 3 

The above results can easily be extended to p > 3 objective 

functions problem as follows: 

k p

k 1

1k
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C
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=

= =
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2.3. Finding Additional Pareto Optimal Solution in a Two – 

Objective Problem 

In order to find additional Pareto optimal solution (if one 

exists) in a two – objective linear programming problem, we 

could try to move the line segment joining x
1
 and x

2
 in the 

direction of arrow in figure 1. Algebraically, this means 

solving the single objective function problem P3. 

P3: 1 1 2 2max{   w   w }z z z= +  

Subject to: 

n

ij j i

j 1

a x   b  , i  1, 2, . . . , m

=

≤ =∑  

jx  0, j  1, 2, . . . , n≥ =  

Lemma 1:
 The set of non-inferior points is connected [17] 

Lemma 2:
 If x

1
 and x

2
 are two adjacent non-inferior points, then their 

convex combination is non-inferior [17]
 Lemma 3:

 If x
1
 and x

2
 are two non adjacent non-inferior points, then 

there exists at least one non – inferior point in the range (x
1
, 

x
2
) [17]

 Theorem 2: 

If x
1
 and x

2
 are nonadjacent Pareto optimal solutions, then 

the solution of problem P3 is an additional Pareto optimal 

solution of problem P1. 

Proof: 

By connectivity of Pareto optimal solutions, if x
1
 and x

2
 

are nonadjacent, then there exists at least one Pareto optimal 

solution between them. The objective function in problem P3 

is a line joining x
1
 and x

2
 in the objective space; hence the 
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optimal solution of P3 is a Pareto optimal solution x
3
 of 

problem P1. Figure 1 illustrates theorem 2. 

 

Figure 1. Illustration of Theorem 2 

Theorem 3: 

If x
1
 and x

2
 are adjacent Pareto optimal solutions, then the 

optimal solutions of problem P3 will be on the line segment 

joining x
1
 and x

2
 in which case x

1
 and x

2
 are the only Pareto 

optimal solution. 

Proof: 

Since Pareto optimal solutions are connected and if x
1
 and 

x
2
 are adjacent there does not exists any Pareto optimal 

solution between them; hence solutions of problem P3 are x
1
 

and x
2
. Figure 2 illustrates theorem 3. 

 

Figure 2. Illustration of Theorem 3. 

Remark 1: 

Supposing an additional Pareto optimal solution x
3
 has 

been found using known solutions x
1
 and x

2
, one can 

investigate the existence of another Pareto optimal solution 

by using known solutions x
1
 and x

3
 as well as x

2
 and x

3
. We 

can continue this process until all the Pareto optimal 

solutions are found. 

Remark 2: 

In order to find an additional Pareto optimal solution (if 

one exists) given p Pareto optimal solutions x
k
, k = 1, 2,..., p 

in a p – objective linear programming problem, we solve the 

scalar problem P4. 

P4: 

p

k k

k 1

max{   w  }z z

=

= ∑  

Subject to: 

n

ij j i

j 1

a x   b  , i  1, 2, . . . , m

=

≤ =∑  

jx  0, j  1, 2, . . . , n≥ =
 

Remark 3: 

If the solution x
p+1

 of P4
,
 is an additional Pareto optimal 

solution to problem P1, then one can investigate the existence 

of another Pareto optimal solution by replacing one of the 

previous p Pareto optimal solutions with x
p+1 

and solving 

problem P4 again. The process continues until all the Pareto 

optimal solutions are found. 

Example 1: (illustrating two objective functions problem) 

LP1 Maximize Z1 = -8x1 + x2 

LP2 Maximize Z2 = 10x1 + 3x2 

Subject to: 

5x1 + 3x2 ≤ 15 

-4x1 + 2x2 ≤ 8 

x1 ≤ 2 

x2 ≤ 4.2 

x1, x2 ≥ 0 

First, we solve single objective function problems LP1 and 

LP2 to obtain two extreme Pareto optimal solutions shown in 

the Table 1. 

Table 1. Combing objective functions of LP1 and LP2 using (x1, x2). 

X = (x1, x2) (Z1, Z2) (w1, w2) Z = w1Z1 + w2Z2 

x1 = (0, 4) (4, 12) 
(0.42, 0.58) Z = 2.44x1 + 2.16x2 

x2 = (2, 1.7) (-14.3, 25.1) 

We then solve the following scalar problem 

Maximize Z = 2.44x1 + 2.16x2 

Subject to: 

5x1 + 3x2 ≤ 15 

-4x1 + 2x2 ≤ 8 

x1 ≤ 2 

x2 ≤ 4.2 

x1, x2 ≥ 0 

The solution of the scalar problem is x
3
 = (0.48, 4.2) which 

is additional Pareto optimal solution. Now, we investigate the 

existence of another Pareto optimal solution by considering 

(x
1
, x

3
) and (x

2
, x

3
). Using (x

1
, x

3
) we obtain the results in 

Table 2. 

Table 2. Combing objective functions of LP1 and LP2 using (x1, x3). 

X = (x1, x2) (Z1, Z2) (w1, w2) Z = w1Z1 + w2Z2 

x1 = (0, 4) (4, 12) 
(0.6, 0.4) Z = -0.8x1 + 1.8x2 

x3 = (0.48, 4.2) (0.36, 17.4) 

The scalar problem is 

Maximize Z = -0.8x1 + 1.8x2 

Subject to: 

5x1 + 3x2 ≤ 15 

-4x1 + 2x2 ≤ 8 

x1 ≤ 2 
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x2 ≤ 4.2 

x1, x2 ≥ 0 

The solution of the scalar problem is x
4
 = (0.1, 4.2) which 

is additional Pareto optimal solution. Now, we investigate the 

existence of another Pareto optimal solution by considering 

(x
2
, x

3
). 

Table 3. Combing objective functions of LP1 and LP2 using (x2, x3). 

X = (x1, x2) (Z1, Z2) (w1, w2) Z = w1Z1 + w2Z2 

x2 = (2, 1.7) (-14.3, 25.1) 
(0.34, 0.66) Z = 3.88x1 + 2.32x2 

x3 = (0.48, 4.2) (0.36, 17.4) 

 

The scalar problem is 

Maximize Z = 3.88x1 + 2.32x2 

Subject to: 

5x1 + 3x2 ≤ 15 

-4x1 + 2x2 ≤ 8 

x1 ≤ 2 

x2 ≤ 4.2 

x1, x2 ≥ 0 

The solution of the scalar problem is x
5
 = (2, 1.7) which is 

the same as x
2
. There is no new Pareto optimal solution is 

this range. 

Returning to the using (x
1
, x

4
) and (x

3
, x

4
) we found that 

there does not exist Pareto optimal solutions. So the complete 

Pareto optimal solutions are x
1
 = (0, 4), x

2
 = (2, 1.7), x

3
 = 

(0.48, 4.2) and x
4
 = (0.1, 4.2). 

Example 2 (Illustrating three objective functions problem): 

LP1 Maximize Z1 = -8x1 + x2 

LP2 Maximize Z2 = 10x1 + 3x2 

LP3 Maximize Z3 = -0.8x1 + 1.8x2 

Subject to: 

5x1 + 3x2 ≤ 15 

-4x1 + 2x2 ≤ 8 

x1 ≤ 2 

x2 ≤ 4.2 

x1, x2 ≥ 0 

Solving the three single objective function problems LP1, 

LP2 and LP3 we obtain the results shown in Table 4. 

Table 4. Combing objective functions of LP1 and LP2 using (x1, x2, x3). 

X = (x1, x2) (z1, z2, z3) (w1, w2, w3) Z = w1z1 + w2z2 + w3z3 

x1 = (0, 4) (4, 12, 7.2) 

(0.241, 0.235, 0.525) Z = 0.002x1 + 8.236x2 x2 = (2, 1.7) (-14.3, 25.1, 4.66) 

x3 = (0.1, 4.2) (3.4, 13.6, 7.64) 

 

We compute the cofactors c1k from the determinant in 

equation (9) thus: 

2 1 2 1
2 2 3 3

11 3 1 3 1
2 2 3 3

z z z z 13.1 -2.54
c       9.83

1.6 0.44z z z z

− −
= = =

− −
 

2 1 2 1
1 1 3 3

12 3 1 3 1
1 1 3 3

z z z z -18.3 -2.54
c        -9.58

-0.6 0.44z z z z

− −
= = =

− −
 

2 1 2 1
1 1 2 2

13 3 1 3 1
1 1 2 2

z z z z -18.3 13.1
c       -21.42

-0.6 1.6z z z z

− −
= = =

− −
 

Then from equation (8) we obtain the weights: w1 = 0.241, 

w2 = 0.235, w3 = 0.525 

The associated scalar problem is 

Maximize Z = 0.002x1 + 8.236x2 

Subject to: 

5x1 + 3x2 ≤ 15 

-4x1 + 2x2 ≤ 8 

x1 ≤ 2 

x2 ≤ 4.2 

x1, x2 ≥ 0 

The solution of the scalar problem is x
4
 = (0.48, 4.2). 

We now investigate the existence of additional Pareto 

optimal solution by considering the solutions (x
1
, x

2
, x

4
), 

(x
1
, x

3
, x

4
) and (x

2
, x

3
, x

4
). None of these give additional 

solution. 

3. Conclusion 

We have developed formulas for determining 

appropriate weights for combining objective functions in 

multi-objective linear programming problems. A solution 

scheme for generating all Pareto optimal solutions is 

provided. For the purposes of ascertaining the 

appropriateness of our formulas and solution scheme, two 

and three objective functions problems are formulated and 
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solved. Even though simplex method can find all basic 

Pareto optimal solutions like ours it is too lengthy and 

requires a lot of bookkeeping. Our method is simple and 

easy to understand compared to the simplex method and 

other existing methods. 

 

References 

[1] Lachhwanni, K. C. (2018): On Solving multi-objective linear 
bi-level multi-follower programming. International Journal of 
Operations Research. Inderscience Online, Vol. 31, Issue 4. 

[2] Omrani, H; Hushyar, H; Zolmabadi, S. M; Asi, A. J. (2018): A 
multi-objective programming model for selecting third – party 
logistics companies and suppliers in a closed-looped supply 
chain. International Journal of Operations Research. 
Inderscience Online, Vol. 30, Issue 4. 

[3] Khanjarpanah, H and Pishvaee, M. S (2017): A fuzzy robust 
programming approach to multi-objective portfolio 
optimization problem under uncertainty. International Journal 
of Operations Research. Inderscience Online, Vol. 12, Issue 1. 

[4] Hwang, C. L. and Masud, A. S. (1979). Multiple objectives 
decision making: Methods and Applications. Springer. 

[5] Mavrotas, G. (2007). Generation of efficient solutions in 
multi-objective mathematical programming problems using 
games. Effective implementation of the e – constraint method. 
Lecturer, Laboratory of Industrial and Economics. School of 
Chemical Engineering. National technical University of 
Athens. 

[6] Steuer, R. E. (1977). An interactive multi-objective linear 
programming procedure. TIMS Stud. Management Science, 6, 
225–239. 

[7] Sprong, J. (1981). Interactive Multiple Goal Programming. 
Nijhoff, Leiden, The Netherlands. 211pp. 

[8] Korhonen, P. & Laakso, J. (1986). A visual interactive method 
for solving the multi-criteria problem. European Journal of 
Operations Research, 24, 277–287. 

[9] Gardiner, L. R. & Steuer, R. E. (1994). Unified interactive 
multi-objective programming. European Journal of Operations 
Research, 74, 391–406. 

[10] Stewart, J. (1999). Concepts of interactive programming. 
Advances in MCDM models, Algorithms. Theory and 
Applications, Kluwer Academic Publishers, Boston. 299 pp. 

[11] Branke, J; Deb, K; Miettinen, K. & Slowinsk (2008). Mult-
objective optimization: Interactive and Evolutionary 
Approaches. Springer-verlag Bellin Heidenlbetg. 481 pp. 

[12] Sadrabadi, M. R. & Sadjadi, S. J. (2009). A new interactive 
method to solve multi- objective linear programming 
problems. J. Software Engineering & Application, 2, 23 –247. 

[13] De, P. K. & Yadav, B. (2011). An algorithm for obtaining 
optimal compromise solution of a mult-objective fuzzy linear 
programming problem. International Journal of Computer 
Application, 17, 20–24. 

[14] Augusto, O; Bennis, F., and Caro, S. (2012). A new method 
for decision making in multi-objective optimization problems. 
Pesquisa Operational, 32 (2): 331-339. 

[15] Zeleny, M. (1974). Linear Multi-objective Programming. 
Springer, berlin- Heidelberg- New York. 

[16] Trafalis, T. B., Mishina, T. and Foote, B. L. (1999). An 
interior point multi-objective programming approach for 
production planning with uncertain information. Computers 
and Industrial Engineering, 37, 631–648. 

[17] Eiselt, H. A; Pederzoli G. & Sandblom C. L. (1987): 
Continuous optimization models. Walter de Gruyter, New 
York. 

 

 


