
 

Science Journal of Applied Mathematics and Statistics 
2020; 8(1): 1-10 

http://www.sciencepublishinggroup.com/j/sjams 

doi: 10.11648/j.sjams.20200801.11 

ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)  

 

Symmetrization of the Classical “Attack-defense” Model 

Pavel Yuryevich Kabankov
1
, Alexander Gennadevich Perevozchikov

1
, Valery Yuryevich Reshetov

2
, 

Igor Evgenievich Yanochkin
1
 

1Department of System Design, JSC NPO RusBITekh-Tver, Tver, Russia 
2Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia 

Email address: 

 

To cite this article: 
Pavel Yuryevich Kabankov, Alexander Gennadevich Perevozchikov, Valery Yuryevich Reshetov, Igor Evgenievich Yanochkin. 

Symmetrization of the Classical “Attack-defense” Model. Science Journal of Applied Mathematics and Statistics.  

Vol. 8, No. 1, 2020, pp. 1-10. doi: 10.11648/j.sjams.20200801.11 

Received: December 7, 2019; Accepted: December 18, 2019; Published: January 7, 2020 

 

Abstract: The article considers Germeyer’s “doubled” classic “attack-defense” game, which is symmetrical for the participants 

in the sense that in one game each participant is an “attack” party and in the other game each participant is a “defense” party. This 

corresponds to the logic of bilateral active-passive operations, when the parties simultaneously conduct defensive-offensive 

operations against each other. The mathematical expectation of the number of destroyed enemy means is taken as criteria for the 

effectiveness of the parties, which should be maximized implicitly. Thus, both sides are placed in a “defense” position. Under 

otherwise equal conditions, the parties strive to minimize shares aimed at defense, guided by a strategy of reasonable sufficiency 

of defense. The authors study Pareto-dominated equilibria depending on the initial ratio of the parties forces and, in particular, the 

extreme points of Pareto sets. Formulas are obtained for such equilibria depending on the parties’ balance of forces, which allows 

us to build a dynamic expansion of the model in the future. The main research method is the parametrization of Nash’s equilibria. 

The parameterization of the equilibria shows that they fill the two-dimensional subregion of a unit square with a boundary. 

Therefore, for its narrowing, it makes sense to distinguish from it the Pareto-non-dominated part of the boundary and its extreme 

points. The latter provide an opportunity to assess the maximum share of the strike means of the parties, which they can afford to 

allocate without prejudice to the defense. It is shown that these fractions represent piecewise continuous functions of the initial 

ratio of the parties’ forces and explicit expressions for them are obtained. A numerical example of the construction of the Pareto-

non-dominated part of the boundary and its extreme points is given. 

Keywords: Germeyer’s Classical “Attack-Defense” Game, Multi-Turn Generalization, Best Guaranteed Result of Defense, 

Game’s “Doubling”, Equilibrium Strategies Parameterization,  

Pareto-Minimal Set of Equilibria, Pareto-Minimal set Extreme Points 

 

1. Introduction 

The work is based on the results from [1-2] and is a further 

development of the constructions in [3-4]. Germeyer’s 

classical “attack-defense” model was defined and studied in 

[5]. It is a modification of the Gross’ model [6]. In the 

military models points are usually interpreted as directions 

and characterize the spatial distribution of defense resources 

across the width. However, in reality there is also a spatial 

distribution of defense resources in depth, characterized by 

the number of levels of defense lines in this direction. 

The simplest model was proposed in [5], taking into 

account the defense’s lines. A game model that generalized 

the Gross and Germeyer models was studied in [7]. In this 

model a constructive description of the set of all optimal 

mixed attack strategies was obtained. The Gross’s model 

with the opposite interests of the parties was studied in [8], 

and dynamic extensions of the model were studied in [9, 10]. 

a direct generalization of the attack-defense game on 

networks describing the topology of the paths leading to 

defended objects was proposed in [11]. 

The further generalization of the classical “attack-defense” 

game may consist in its symmetrization, which leads in the 

general case to problems of finding equilibria with concave 
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criteria, that can be reduced to solving a system of inclusions 

[12]. The parameterization of the equilibria shows that they 

fill the two-dimensional subregion of a unit square with a 

boundary. Therefore, for its narrowing, it makes sense to 

distinguish from it the Pareto-non-dominated part of the 

boundary and its extreme points. The latter provide an 

opportunity to assess the maximum share of the strike means 

of the parties, which they can afford to allocate without 

prejudice to the defense. It is shown that these fractions 

represent piecewise continuous functions of the initial ratio 

of the forces of the parties and explicit expressions for them 

are obtained, which can be used in the dynamic expansion of 

the model according to the scheme [13]. 

2. The Simplest Multi-Line 

Generalization of the Model 

The simplest model, taking into account the defense’s lines, 

consists in modifying the classical model [5], in which the 

function of attack’s winning has the form [1]: 

1

( , ) max ; ,i

n
T
i i i i i i

i

f x y q x x p r y

=

 = −
 ∑               (1) 

and the vectors ,x y belong to the sets 

1 1

, ,

n n
n n

i i

i i

M x E x X N y E y Y+ +
= =

      = ∈ = = ∈ =   
      

∑ ∑    (2) 

where iT  is the number of defense lines in the i − th direction 

1,...,i n= , ir − the maximum number of actions that one unit 

of defense can produce, ip − the probability of hitting one 

enemy attack means with one effect in the i − th direction, 

which is assumed to be independent from the number 

1,..., it T=  of the defense line, 1i iq p= − − the corresponding 

probability of non-defeat, X and Y  is the total number of 

attack and defense means, which are considered 

homogeneous and infinitely divisible, ix  and iy  - the 

number of attack and defense means in the i − th direction. In 

particular, formally, when 1ip =  we obtain the Germeier’s 

classical model [5]. 

The content of the model is interpreted as follows: the 

attack party strive to maximize the total amount of means 

that break through, distributing its means in n directions. 

Defense party, on the contrary, strive to minimize the number 

of means that break through by distributing its means in n  

directions. In each direction, the attack party must overcome 

the layered defense of the enemy. The result of a combat 

collision at one defense line is given by a function 

max ;i i i i i i ix q x x p r y ′ = −
 

 that is the result of the Osipov-

Lanchester’s discrete one-step model of dynamics of average. 

It is obtained as follows: the number of attack means that 

have received an impact at a given line is min ;i i i in x r y=     

providing that exactly one defense means effect one attack 

means. The mathematical amount of attack’s losses will be 

i i im p n= . As a result, the mathematical expectation of the 

number of means that break through will be 

max ;i i i i i i i i ix x m q x x p r y ′ = − = −
 

. The final formula for 

the mathematical expectation of attack means overcoming all 

iT  defense’s lines will be max ;iT
i i i i i i ix q x x p ru ′ = −

 
 taking 

into account the optimization for the defense party of the 

distribution of its means iy  at the lines and derived in [1]. 

Using the convexity of the function ( , )f x y , it was proved 

for this antagonistic game (see [1]) that the best guaranteed 

result (BGR) of defense 

1

1,2,...,
1

1
max( max ; ( ) ))i

n
T
i

i n
i ii

v X q X Y
p r

−

=
=

= − ∑            (3) 

will be the value of the game and the minimax defense 

strategy is optimal. In this case, the optimal attack strategy is 

a mixed strategy, consisting in concentrating all forces in one 

direction in accordance with the optimal probability 

distribution, which can be obtained by the formulas given in 

[1]. 

Let’s denote for brevity 

1

1,2,...,
1

1
max , 1 , ( )i

n
T
i

i n
i ii

Q q P Q t
p r

−

=
=

= = − = ∑ .        (4) 

3. Model’s Symmetrization 

Let’s suppose that strike forces and defense forces take 

part in a game of two sides ,B A . The proportion of strike 

forces and defense forces is ,
B Aσ σ  from the total number of 

parties’ means ,
B A

Y Y . Then the losses of the opposite sides 

will be according to formula (3), taking into account the 

accepted notation (4) 

( , ) (1 )

max{ (1 ), (1 ) }

min( (1 ), ),

B A A A

B A A A A B B B

B A A B B B

F Y

Q Y Y t Y

P Y t Y

σ σ σ
σ σ σ

σ σ

= − −

− − − − =

= −

      (5) 

and 

( , ) (1 )

max{ (1 ), (1 ) }

min( (1 ), ).

B A B B

A B B B B A A A

A B B A A A

G Y

Q Y Y t Y

P Y t Y

σ σ σ
σ σ σ

σ σ

= − −

− − − − =

= −

    (6) 

The payment functions of the parties are continuous and 

concave; therefore, by virtue of Theorem 8 in [12, p. 90], 

there are situations of parties’ equilibrium that satisfying the 

inclusions 
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0 0 0 0( ), ( )B A A Bσ σ σ σ∈ Σ ∈Ξ ,                    (7) 

where 

[0,1]

[0,1]

( ) max ( , ),

( ) max ( , )

B

A

A B A

B B A

Arg F

Arg G

σ

σ

σ σ σ

σ σ σ
∈

∈

Σ =

Ξ = −
             (8) 

sets of the parties’ best answers. In this case, it can be easy to 

find explicitly. 

(1 )
( ) [min( ,1);1],

(1 )
( ) [min( ,1);1].

B A A
A

B B

A B B
B

B A

P Y

t Y

P Y

t Y

σσ

σσ

−
Σ =

−
Ξ =

         (9) 

Or 

{ }1 ,0 1 ,

( )
(1 )

[ ,1],1 1,

B B
A

B A
A

B A A B B
A

B B B A

t Y

P Y

P Y t Y

t Y P Y

σ
σ

σ σ


≤ < −

Σ = 
− − ≤ ≤



   (10) 

and 

{ }1 ,0 1 ,

( )
(1 )

[ ,1],1 1.

A A
B

A B
B

A B B A A
B

A A A B

t Y

P Y

P Y t Y

t Y P Y

σ
σ

σ σ


≤ < −

Ξ = 
− − ≤ ≤



   (11) 

4. Parameterization of Equilibria 

Parameterization of all Nash’s equilibria can be obtained 

by choosing specific points from segments (9) in inclusion 

(7), 

(1 )
(1 ) min( ,1) ,

(1 )
(1 ) min( ,1) ,

B A A
B

B B

A B B
A

A A

P Y

t Y

P Y

t Y

σσ λ λ

σσ µ µ

−
= − +

−
= − +

           (12) 

where 

, [0,1]λ µ ∈                                   (13) 

- some parameters. 

Equilibria correspond to points satisfying the conditions 

0 1,0 1
A Bσ σ≤ ≤ ≤ ≤ .                       (14) 

Let’s consider a subset [0,1] [0,1]Ω ⊆ ×  of such pairs 

( , )λ µ  under the conditions (12) - (14) are compatible. The 

mathematical expectation of the number of destroyed enemy 

means is taken as criteria for the effectiveness of the parties, 

which should be implicitly. Thus, both sides are placed in a 

“defense” position. The strategy of each side is the share of 

forces directed to defense. Let’s suppose that under otherwise 

equal conditions, the parties adhere to a strategy of 

reasonable defense adequacy. The desire to minimize the 

shares ,
B Aσ σ  allocated for defense can be formalized by 

considering its one-dimensional subset ′Ω  of Pareto-

minimal points ( , )λ µ ∈ Ω  and its images ( , )B Aσ σ . 

Therefore, further the Pareto-dominated equilibria (12) - (14) 

are studied depending on the initial ratio of the parties forces 

and, in particular, the extreme points of the Pareto sets. 

For the attack party, which has a noticeable excess of the 

balance of forces in its favor, it makes sense to choose an 

equilibrium corresponding to the minimum value of the share 

allocated to cover. The minimization of the criterion 

( , )Bσ λ µ  on the set ′Ω  of Pareto-non-dominated equilibria 

gave such a solution. We will call it a solution of the 

minimum sufficiency of defense for the attack party. Note 

that in this case ( , )Aσ λ µ  reaches a maximum on the set ′Ω  

due to the Pareto’s non-dominance. 

Let's suppose that , 0
B A

Y Y > . Denote the ratio of the 

parties forces the from the point of view B  by /B Ax Y Y= . 

Assume, following [14], that the conditions are correct 

/ 1, / 1.
B B A A

P t P t< <                           (15) 

Let's consider the various cases that arise when the minima 

are revealed in (12). Depending on whether the minimum in 

the first and second equations in (12) is equal to the left (L) 

or right (R) expression, we’ll consider the LL, LR, RL, and 

RR options. 

4.1. The Main Case LL 

Let’s suppose that the minima in (12) are reached on the 

first component. Then (12), (14) are equivalent to the system 

(1 ) (1 ) (1 ) (1 )
,

B A A A B B
B A

B B A A

P Y P Y

t Y t Y

λ σ µ σσ λ σ µ− − − −
= + = + , (16) 

with conditions 

1 1,1 1,
B B A A

A B

B A A B

t Y t Y

P Y P Y
σ σ− ≤ ≤ − ≤ ≤            (17) 

Remark 1. The point ( , ) (1,1)B Bσ σ =  is always the 

equilibrium and corresponds to the point ( , ) (1,1)λ µ = ∈ Ω . 

Therefore, it is interesting to obtain conditions under which 

( , ) (0,0)λ µ = ∈ Ω , i.e. [0,1] [0,1]Ω = × and { }(0,0)′Ω =  

consists of a single point. 

System (16), (17), when ( , ) (0,0)λ µ = taking into account 

the accepted notation, has the form of conditions 

It is easy to verify that the left inequalities in (19) to be 

verified, taking into account (18), are collectively equivalent to 

the right. Therefore, system (19) is equivalent to the conditions 
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1
, (1 ),

B AA
B A B

B A

P P
x

xt t

σσ σ σ−= = −             (18) 

and 

1
1 1,1 1.

B A
A B

B A

t t
x

xP P
σ σ− ≤ ≤ − ≤ ≤           (19) 

It is easy to verify that the left inequalities in (19) that 

were subjects to verification are collectively equivalent to the 

right inequalities taking into account (18). Therefore the 

system (19) is equivalent to the conditions 

1
1 ,1

B A
A B

B A

t t
x

xP P
σ σ− ≤ − ≤ ,             (20) 

and 

, 0
A Bσ σ ≥ .                               (21) 

4.1.1. Case When the Left Sides in (20) Are Nonpositive 

We’ll First Consider the Case When the Left Sides in (20) 

Are Nonpositive, then (21) Implies (20) and the Solution to 

the System (18), (20) - (21) Relatively x  Is the Segment 

.
B A

B A

P t
x

t P
≤ ≤                             (22) 

Note that due to inequalities (15), the right side of (22) is 

larger than the left one. 

Let’s solve system (18) with respect to Bσ : 

(1 )

.

(1 )

A

B A
B

B B A

B A

P
x

P t

t P P
x

t t

σ
−

=
− ⋅

                   (23) 

Then 0Bσ ≥  by virtue of (15), (22). It follows from (20) 

that , 1
B Aσ σ ≤ , whence it follows that 

(1 ) 0
A

A B

A

P
x

t
σ σ= − ≥ .                          (24) 

Thus ( , ) (0,0)λ µ = ∈ Ω  in case (22). 

4.1.2. Case When ( , ) (0,0)λ µ = ∉ Ω  

Let’s Now 

.
A B

A B

t P
x

P t
> >                                    (25) 

Then condition (20) is equivalent to the right inequality 

1
1

A
B

A

t

xP
σ− ≤ ,                             (26) 

which should be solved in conjunction with (21). However, 

the latter is false due to the fact that 0Bσ <  by virtue of (23). 

Thus, under condition (25), the point ( , ) (0,0)λ µ = ∉ Ω . 

4.1.3. Symmetric Case 

Let’s Now 

.
B A

B A

P t
x

t P
< <                              (27) 

Remark 2. Case (27) is symmetric (25); therefore, it can 

not be considered separately. In fact, condition (22) is 

invariant with respect to the replacement B  by A  and x  by 

1

x
, whereby case (27) goes over into (25). 

Thus, the following theorem is valid. 

Theorem 1. A necessary and sufficient condition that the 

set ′Ω  consist of a single point { }(0,0)  is condition (22). 

Remark 3. The only solution that appears in Theorem 1 is 

stable provided that the latter adheres to a strategy of 

reasonable sufficiency of defense, i.e. it strive to minimize 

the share of its funds allocated for defense when reaching the 

maximum of its criterion, as the second parties in the 

Stackelberg equilibrium (see [12], p. 122). Therefore, it can 

be called the Stackelberg symmetrized equilibrium. 

Remark 4. It seems unnatural to play along with your 

opponent in the war game using the strategies of the second 

players in the Stackelberg equilibria, but this contradiction is 

easily eliminated by moving to the vector criteria of the 

parties ( ( , ),1 )B A BF σ σ σ−  and ( ( , ),1 )B A AG σ σ σ− , 

accordingly, to the lexicographic equilibrium, which is 

defined similarly to the classical Nash’s equilibrium using the 

concept of the lexicographic maximum of the vector criterion. 

This equilibrium will also be equivalent to a system of 

inclusions of parties strategies to point-to-multiple mappings 

that implement the lexicographic maximum of each party, as 

multivalued functions of the strategy of the opposite side. 

After that, each party “plays along” with itself according to 

the second criterion 1 Bσ−  and 1 Aσ−  accordingly. We 

prefer to stay in this article within the framework of the 

formalism of Stackelberg symmetrized equilibrium so as not 

to complicate the proof of the main results, since the second 

criteria are equivalent to the criteria ( , )B AG σ σ  and 

( , )B AF σ σ  in the sense of monotonicity by 1 Bσ− and 

1 Aσ− , accordingly, by the definition of criteria (5), (6). 

4.1.4. Researching the Obtained Solution 

The general solution of system (16) relatively Bσ has the form 

1 ,
( , )

B

B
B

P
x

t

xg

λ
σ

λ µ

− −
= −                             (28) 

where indicated for brevity 

( , ) 1 (1 )(1 ) 0.
B A

B A

P P
g

t t
λ µ λ µ= − ⋅ − − >             (29) 
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In order to 1Bσ <  it is need to 

0
B

B

P
x

t
λ− − > .                                (30) 

Derivatives Bσ of ,λ µ  has the form 

2 2

( , ) ( ) ( , ) ( ) ( , )

,
( , ) ( , )

B B

B B
B B

P P
g x g x g

t t

xg xg

λ µ

λ µ

λ µ λ λ µ λ λ µ
σ σ

λ µ λ µ

+ − − − −
= =  

and are positive under condition (30) by virtue of the 

inequalities 

( , ) (1 )) 0, ( , ) (1 )) 0,
B A B A

B A B A

P P P P
g g

t t t t
λ µλ µ µ λ µ λ= ⋅ − > = ⋅ − >  

that correct at 1, 1λ µ< < . 

4.2. Additional Case LL 

We’ll solve system (16), (17) in the general case when 

condition (22) is not satisfied, i.e. 

[ , ].
B A

B A

p t
x

t p
∉ )                                  (31) 

Let's suppose for definiteness, that case (25) holds, i.e. the 

side B  has an advantage in the balance of forces. Case (27) 

is symmetric by virtue of Remark 5; therefore, it can not be 

considered separately. 

The solution of system (16) - (17) relatively Bσ  has the 

form (31) 

(1 )(1 )

.

(1 (1 )(1 ))

B B A

B B A
B

B A

B A

P P P
x

t t t

P P
x

t t

λ µ λ
σ

λ µ

− ⋅ − − +
=

− ⋅ − −
               (32) 

Inequality (17) is equivalent to the right inequality 

1
1

A
B

A

t

xP
σ− ≤ ,                                    (33) 

which should be solved in conjunction with the condition 

1Bσ ≤ .                                   (34) 

In fact, it follows from (14) and (33) that 0Bσ ≥ , and the 

condition is equivalent to the condition 

(1 )
1,

A B B

A A

P Y

t Y

σ−
≤  

which is a consequence of (33). 

Condition (34) is equivalent to the inequality 

B

B

P
x

t
λ+ ≤ .                                  (35) 

The condition (33) is remains, which, taking into account 

(32), takes the form 

(1 )(1 )
1

1

(1 (1 )(1 ))

B B A

AB B A

B A A

B A

P P P
x

tt t t

xP P P
x

t t

λ µ λ

λ µ

− ⋅ − − +
≥ −

− ⋅ − −
. 

The latter is equivalent to the inequality 

(1 )(1 )
1

( ) 1

1 (1 )(1 ) 1 (1 )(1 )

B B A

AB B A

B A A B A

B A B A

P P P

tt t t

x P P P P P

t t t t

λ λ µ

λ µ λ µ

+ ⋅ − −
+ ≥ +

− ⋅ − − − ⋅ − −

. 

Hence we obtain the condition 

( )(1 (1 )(1 ))

1 (1 )(1 )

(1 (1 )(1 )) (1 )(1 ).

B

A B AB

B A A B A

B A

A AB B A B B

B A B A B A B

P

t P Ptx
P P P t t

t t

t tP P P P P

t P t t t P t

λ
λ µ

λ µ

λ λ µ λ λ µ

+
≤ + − ⋅ − − =

− ⋅ − −

= + + − ⋅ − − = + + − − −

 

In the view of (35), we finally obtain the condition 

(1 )(1 ).
AB B B

B B A B

tP P P
x

t t P t
λ λ λ µ+ ≤ ≤ + + − − −  (36) 

Thus, the set Ω  of admissible ( , )λ µ  in case (25) is 

determined by conditions (13), (36). 

By virtue of (32) ( , )Bσ λ µ  it can be represented in the 

form (31) 

1 .

(1 (1 )(1 ))

B

B
B

B A

B A

P
x

t

P P
x

t t

λ
σ

λ µ

− −
= −

− ⋅ − −
      (37) 

Let’s note that by virtue of condition (36), the fraction on 

the right side is a non-negative quantity. 

Theorem 2. Let’s suppose that condition (25) is satisfied. 

Then the necessary condition for the minimality of the 
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criterion ( , )
Bσ λ µ  on the set Ω  is the conditions 0λ =  or 

1µ = . 

Evidence. If for some ( , )λ µ ∈ Ω  the conditions 

0, 1λ µ> <  are true, then there exists such a point 

( , )λ µ′ ′ ∈ Ω  that ,λ λ µ µ′ ′< >  and the value of the function 

( , ) (1 )(1 )
B

B

p
g

t
λ µ λ λ µ= − − −  

remained unchanged. This follows from the strict increase of 

this function with ,λ µ  and respect to condition (36), which 

together with (13) defines the set Ω . Moreover, the value of 

the function ( , )
Bσ λ µ  decreases according to the obtained 

expression (37), which contradicts the minimality of the 

criterion ( , )
Bσ λ µ  on the set Ω . It follows that the 

conditions 0λ =  or 1µ =  are the necessary condition for the 

minimality of ( , )
Bσ λ µ . 

Theorem 2 allows us to find all the minimum points of the 

criterion ( , )
Bσ λ µ  on the set Ω  in case (25). 

4.2.1. Conditions for x , Under Which 0λ =  

Let’s Find the Conditions for x , Under Which 0λ = , i.e. 

( , )
Bσ λ µ  Reaches an Absolute Minimum. Substituting in 

(31), Taking into Account the condition (25), We’Ll Obtain 

the Inequality 

(1 ) .
A AB B B

B A B A B

t tP P P
x

t P t P t
µ µ≤ + − − = +        (38) 

On the right side of (38) is an increasing function from 

[0,1]µ ∈ . Substituting the extreme values, we’ll obtain the 

boundaries of a possible change of x  

.
A A B

A A B

t t P
x

P P t
≤ ≤ +                           (39) 

Moreover, the µ  value should be chosen as low as 

possible, taking into account the strategy of necessary 

sufficiency of the A  player’s defense. Therefore, (38) is 

satisfied as an equality, whence we’ll obtain a solution of the 

B  player’s minimum sufficiency 

0, ( ).
AB

B A

tt
x

P P
λ µ= = −                        (40) 

Note that when the range (39) runs through, the µ  value 

changes from 0 to 1. Thus, the following lemma is proved. 

Lemma 1. Let’s suppose that conditions (14), (22) are 

satisfied. Then a necessary and sufficient condition for the 

point (40) to be a solution of the B  player’s minimum 

sufficiency is condition (39). 

Example 1. Let’s suppose that there are 1n =  directions 

with 1T =  so that t pr=  and ,Q q P p= = . Let 

1, 2, 2,5.
B A

r r x= = =  It is required to construct a Pareto set 

of parameters ( , )λ µ . 

Solution. Condition (39) 

1
2 2,5 3.

A A B
A A

A A B B

t t P
r x r

P P t r
= = ≤ = ≤ + = + =  

is satisfy. Consequently, the permissible values of the 

parameter vector ( , )λ µ  is satisfy inequality (36) where only 

the right one is nontrivial, which takes the form 

2,5 (1 )(1 ) 3 (1 )(1 ).
AB B

B A B

tP P
x

t P t
λ λ µ λ λ µ= ≤ + + − − − = + − − −  

The latter is equivalent to the inequality 

0,5 (1 )(1 ) 1λ λ µ λ µ λµ+ ≥ − − = − − + . 

The equality holds on the Pareto border, whence, taking 

into account conditions (13), we’ll obtain its parametric 

notation in the form 

0,5
,0 0,5

2

µλ µ
µ

−= ≤ ≤
−

. 

Note that the point (40) 

0, ( ) 0,5
AB

B A

tt
x

P P
λ µ= = − =  

represents its extreme point corresponding to the strategy of 

minimum sufficiency of the B side defense, i.e. providing a 

minimum value of 
Bσ or a minimum value 0λ = , which can 

be verified by substituting the value 0,5µ =  obtained by 

formula (40) into the found parametric representation of the 

Pareto boundary. 

The set Ω  and its Pareto boundary ′Ω are shown in the 

Figure 1. 

 

Figure 1. The set Ω  and its Pareto boundary ′Ω  in example 1. 
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4.2.2. The Case When 

.
A B B

A B B

t p p
x

p t t
λ> + > +                         (41) 

Then the left inequality in (36) is satisfy, and the right 

inequality for minimal equilibria on Bσ is satisfy as equality 

(1 )(1 ).
AB B

B A B

tP P
x

t P t
λ λ µ= + + − − −  

This follows from condition (30) of the strict increase of 

the function Bσ  on ,λ µ , which in this case is satisfied by 

virtue of (41). 

Since 1λ =  is impossible due to the conditions of the 

previous paragraph, then the minimal solution on Bσ  is 

obtained when 1µ = , i.e. when 

,
A

A

t
x

P
λ= +  

where we get 

.
A

A

t
x

P
λ = −                                  (42) 

Moreover, it follows from (41) that 

0,
A B

A B

t P
x

P t
λ = − > >  

The condition 1,λ ≤  is remains which by virtue of (42), is 

equivalent to the inequality 

1.
A

A

t
x

P
≤ +                                (43) 

Combining (41) and (43), we’ll obtain the boundaries of a 

possible change of x  

1.
A AB

A B A

t tP
x

P t P
+ < ≤ +                       (44) 

Moreover, the minimal solution on Bσ  has the form 

, 1.
A

A

t
x

P
λ µ= − =                             (45) 

Note that when x  runs through the range (44) the λ  value 

changes from 

B

B

P

t
 to 1. Thus, the following lemma is proved. 

Lemma 2. Let’s suppose that conditions (14), (41) are 

satisfied. Then a necessary and sufficient condition for the 

point (45) to be a solution of the B  player’s minimum 

sufficiency is condition (44). 

4.3. LR and RL Options 

Lemma 3. Under condition (15) and 

1
, [0,1),

1

A

A

t
x

P
λ

λ
≥ ⋅ ∈

−
                                 (46) 

there is only one minimal equilibrium on Bσ  

, 1
B Aσ λ σ= = .                                    (47) 

Proof. In fact, in the LP option we’ll get 

, 1
B Aσ λ σ= = , 

under conditions 

1
1 1 1,0 1

B A
A B

B A

t t
x

xP P
σ σ λ− ≤ = ≤ ≤ = ≤ − ⋅ , 

from which only the right inequality in the right double 

inequality is nontrivial, which is equivalent to the condition 

1

1

A

A

t
x

P λ
≥ ⋅

−
. 

Remark 5. When 

(1 ), [0,1),
B

B

P
x

t
µ µ≤ − ∈  

there is only one minimal equilibrium 1, .B Aσ σ µ= =  on 

Aσ . This follows from symmetry by virtue of Remark 2. 

 

4.4. RR Option 

In this case equilibria do not exist. This can be seen 

directly from the general parametric representation of 

equilibria (12) - (14). In fact, in this case the restrictions has 

the form 

1
0 1 1 ,0 1 1

B A
A B

B A

t t
x

xP P
σ σ≤ = < − ≤ = < − ⋅  

and obviously incompatible. 

4.5. Comparison of Minimum Equilibria on Bσ  

4.5.1. Minimum Equilibria on �� 

Under Condition (39), the Minimum Equilibria on 
Bσ  

Obtained in Lemmas 1 and 3 Are Comparable. By Lemma 1, 

the Solution of the Necessary Sufficiency of Defense for the 

Side B  is (40) 

0, ( ).
AB

B A

tt
x

P P
λ µ= = −                            (48) 

By the formula (28) we’ll obtain 
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1 ,
( , )

B

B
B

P
x

t

xg

λ
σ

λ µ

− −
= −                              (49) 

where according to (3.18) 

( , ) 1 (1 )(1 ).
B A

B A

P P
g

t t
λ µ µ λ= − ⋅ − −           (50) 

Substituting the expression for µ  from (48) into (50) 

when 0λ = , we’ll obtain 

( , ) 1 (1 ( )) ( )
AB A B A B

B A B A A B

tp p t p p
g x x

t t p p t t
λ µ = − ⋅ − − = − . (51) 

Whence, by virtue of (49) when 0λ = , we’ll obtain 

1 .
A

B

A

t

xP
σ = −                                        (52) 

Now, by formula (32), we have 

(1 ) (1 ) 1.
( , )

B

AA AB
A

A A A

P
x

tP Ptx x
xgt t xP

σ µ µ µ µ
λ µ

−
= − ⋅ + = − ⋅ + =  (53) 

There is the condition (46) by Lemma 3 under condition 

(39) 

1
, [0,1),

1

A

A

t
x

P
λ

λ
≥ ⋅ ∈

−
                      (54) 

when 

1
A

A

t

xP
λ = − .                                  (55) 

Therefore, there is a solution of the necessary sufficiency 

of defense for the B party (47) 

, 1
B Aσ λ σ= = ,                                (56) 

which coincides with (52), (53) taken into account (55). 

Thus, the LL and LR options provide the same solution. 

4.5.2. Dominates the Solution 

Under Condition (44), the Solutions Obtained in Lemmas 

2 and 3 Are Comparable. By Lemma 2, the Solution Is (45) 

, 1.
A

A

t
x

P
λ µ= − =                                  (57) 

By the formula (49) we’ll obtain 

1 1 ,
( , )

AB B

B A B
B

tP P
x

t P t

xg x

λ
σ

λ µ

− − −
= − = −               (58) 

since, according to (50) ( , ) 1g λ µ = when 1.µ =  

Moreover, according to (53) when 1.µ =  we’ll obtain 

1.Aσ =                                         

By Lemma 3, there exists a solution (55), (56) 

1 , 1
A

B A

A

t

xP
σ σ= − = ,                         (59) 

which dominates the solution (58), (59). 

Thus, the LR option provides a better solution than LL 

option. 

4.5.3. Case When There Are no Solutions 

When 

1,
A

A

t
x

p
> +  

in the LL option, and in the LR option there is a solution (59). 

From 4.1 - 4.3 it follows that the following theorem is correct. 

Theorem 3. In the case (26) 

,
A

A

t
x

P
>  

the LR option provides the solution of the necessary defense 

sufficiency for the B  party (59) no worse than the solutions 

of the LL option. 

The classification of non-dominant equilibria of minimum 

defense sufficiency for the B  party is presented in the table 1. 

Table 1. Classification of non-dominated solutions 
Bσ of the minimum defense sufficiency for the B  party when ,B B A At P t P≥ ≥  and 

(1 ) / (1 ) , ( , ) 1 (1 )(1 )
B A

A A A B

B A

P P
P t x g

t t
σ µ σ µ λ µ µ λ= − − + = − ⋅ − − . 

N Range /
B A

x Y Y=  Options ( , )λ µ  Share of 
Bσ  

1 / , /B B A AP t t P 
  

 (0,0)  
/ (1 / )

.
(1 / / )

B B A A

B B A A

P t xP t

x P t P t

−

− ⋅
 

2 / , / /A A A A B Bt P t P P t +  
 (0, / (1 / ))B B A AP t t P−  1 ( / ) / ( ( , ))B Bx P t xgλ λ µ− − −  

3 [ / / , / 1]A A B B A At P P t t P+ +  ( / ,1)A Ax t P−  1 ( / / ) /A A B Bt P P t x− −  

4 [ / , )A At P ∞  ( / ,1)A Ax t P−  1 / ( )A At xP−  
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Remark 6. Solutions 1 and 3 represent a special case of 

solution 2. We remain the solution 3, although it is dominated 

by solution 4, since cases 1-3 correspond to the most 

interesting case of LL, when the Pareto boundary ′Ω  of the 

set Ω  is different from { }(1,1) . 

Remark 7. For non-dominated equilibria of minimal 

sufficiency for the A  party the solutions are obtained from 

symmetry when the indices of the parties are replaced by 

opposite ones. 

Remark 8. The obtained formulas for Bσ  and Aσ  can be 

used in the dynamic extension of the model according to the 

scheme [13], in which the equations of system’s motion will 

have the form: 

1 max{ (1 ), (1 ) }A B A A A A B B B A A
k k k k k k k k kY Q Y Y t Y Yσ σ σ σ+ = − − − +  (60) 

and 

1 max{ (1 ), (1 ) } ,B A B B B B A A A B B
k k k k k k k k kY Q Y Y t Y Yσ σ σ σ+ = − − − + (61) 

where 

/ , 0,1,...B A
k k kx Y Y k= =  

Remark 9. The question is, what solutions remain when 

condition (15) / 1, / 1
B B A A

P t P t< <  is not satisfied? 

The solution (0,0)  in the parametric form on the first 

interval [ / , / ]B B A AP t t P  remain if / /B B A AP t P t≤  and 

/ / 1B B A AP t P t⋅ < . 

For example, / 1,5; / 0,5
B B A A

P t P t= = . Then 

/ 1,5 / 2
B B A A

P t t P= ≤ =  and / / 0,75 1
B B A A

P t P t⋅ = < . 

The solution on the remaining half-interval /A Ax P t≥  

has the usual form (1 / ( ),1)A At xP−  in a parametric form, 

which allows us to build a dynamic extension of the model 

according to the previous scheme. 

4.6. Numerical Example 

Example 2. Let’s suppose that there are 2n =  symmetric 

directions with 1T =  so that 
2

pr
t =  and let 

70; 0,7, 2, 0,3;

100; 0,8, 4, 0,2.

A B B A A

B A A B B

Y p r Q q

Y p r Q q

= = = = =

= = = = =
 

It is required to find the minimum equilibrium on Bσ . 

Solution. With this data 

0,7; 1,6
2 2

B B A A
B Ap r p r

t t= = = = . Let’s find the aspect 

ratio 100 : 70 1,43.x = =  The condition (25) 

1 2
B A

B A

P t
x

t P
= ≤ ≤ =  

is satisfied and the only non-dominated equilibrium is 

obtained by the formulas (23), (24) 

(1 )

0,40,

(1 )

A

B A
B

B B A

B A

P
x

P t

t P P
x

t t

σ
−

= ≈
− ⋅

 

and 

(1 ) 0,43.
A

A B

A

P
x

t
σ σ= − ≈  

Thus, for the side B  it is enough to allocate 40% of its 

forces to defense, and for the side A  it is enough to allocate 

43% of its forces to defense. 

5. Conclusion 

In this work, we proposed the symmetrization of the 

“attack-defense” model defined and studied by Germeyer. 

In the military models points are usually interpreted as 

directions and characterizes the spatial distribution of 

defense resources across the width. It is also possible to 

distribute the resources in depth in relation with the 

separation of the defense. The parties’ resources are 

generally heterogeneous. All these areas of generalization 

of the classical “attack-defense” model were studied by 

the authors in previous works. In reality, there is also a 

symmetry of the conflict, when both sides attack and 

defend at the same time. Therefore, in the present work, a 

symmetric extension of the model was proposed, in which 

the parties simultaneously participate in two games, 

notably in one game the each side is an attack party and in 

the other game the each side is a defense party. The 

solution in the resulting doubled game is defined as the 

non-dominated Nash’s equilibrium by Pareto. A 

classification of such equilibria is given depending on the 

balance of parties’ forces. The extreme points of the 

Pareto’ sets corresponding to the minimum of the share of 

the stronger side directed to defense are distinguished. Or 

the same thing, the extreme points of the Pareto’ sets 

corresponding to the maximum share of the stronger side 

directed to the attack, which makes sense when planning a 

defense’s breakthrough of the weaker side. 
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