
 

Science Journal of Applied Mathematics and Statistics 
2022; 10(5): 90-97 

http://www.sciencepublishinggroup.com/j/sjams 

doi: 10.11648/j.sjams.20221005.12 

ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)  

 

Mathematical Modeling and Treatment Impacts of Water 
Borne Disease Spread 

Mideksa Tola Jiru 

Department of Mathematics, Hawassa College of Teacher Education, Hawassa, Ethiopia 

Email address: 

 

To cite this article: 
Mideksa Tola Jiru. Mathematical Modelling and Treatment Impacts of Water Borne Disease Spread. Science Journal of Applied Mathematics 

and Statistics. Vol. 10, No. 5, 2022, pp. 90-97. doi: 10.11648/j.sjams.20221005.12 

Received: August 19, 2022, 2022; Accepted: September 14, 2022, 2022; Published: November 11, 2022 

 

Abstract: In this work, the treatment impacts of water borne disease is modeled and analyzed from a mathematical 

perspective via a deterministic SEIR model. The total human population is partitioned into four sub-classes namely susceptible 

individuals, exposed individuals, infected individuals and recovered individuals. The stability theory of non-linear differential 

equations and the basic reproductive number represents the epidemic indicator which is obtained from the largest eigen value 

of the next-generation matrix. The model explored invariant region, equilibrium condition, basic reproduction number, and 

stability analysis. The invariant region was proved to be positive and bounded that confirm the feasible model solution. It is 

also observed that the water borne disease is free equilibrium is locally asymptotically stable if the basic reproduction number 

is less than one. In this situation it is found that the disease is controlled whenever the treatment is allowable in the community. 

The disease is endemic equilibrium and globally asymptotically stable in the invariant region if the basic reproduction number 

is greater than one. The sensitivity analysis revealed that the rate of transmission and the rate at which exposed individuals 

become infectious are the most sensitive parameters. The numeric results have been illustrated through figures for different 

values of sensitive parameters by use of MATLAB simulation method. The findings indicate that effective treatment is 

adequate in eradicating and controlling water borne disease. 
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1. Introduction 

Commonly, most water borne disease is a sign of an 

infection in the intestinal tract that is caused by different 

bacteria, virus and parasitic entities. It is also described as 

an increase in the frequency of bowel movements or 

decrease in the consistency of stools that cause the 

discharge of watery, loose stools. The severity of diarrhea is 

determined by the size and number of stools passed within a 

period of time. Severe diarrhea means having more than 10 

loose, watery stools in a single day [1]. Diarrhea is 

preventable and can be treated by taking safe clean drinking 

water by using improved sanitation, washing hands with 

soap regularly, exclusive breast feeding for the first six 

months [3]. Diarrhea is transmitted throughout unclean 

water and contaminated food or from an infected person to 

another, and is most widespread in settings with poor 

hygiene and drinking unclean water and sanitation. 

Diarrhea could be acute which lasts for 2 weeks and chronic 

which leads to severe. Severe diarrhea is the second leading 

cause of death in children under five years old [4]. In 2008, 

16 percent of death was caused by infectious disease 

worldwide [2]. In 2015, among 5.9 million children 

globally deaths before reaching their fifth birthday 9 

percent were died due to diarrhea infection [6]. Diarrheal 

disease affects rich and poor, old and young, and those in 

developed and developing countries alike, yet a strong 

relationship exists between poverty, an unhygienic 

environment, and the number and severity of diarrheal 

episodes especially for children under five [5]. Although 

the presence of blood in the stool is a recognized danger 

signal, prompting more urgent care seeking, even these 

patients either are not treated early or receive poor medical 

care [8]. If antibiotics are properly prescribed, poverty often 

limits the purchase of a full course of treatment or leads to 

cessation of treatment as soon as symptoms improve, even 

though the infection has not been cured [14]. When a high 

percentage of the population lives and depends on open 
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water sources, the risk of diarrhea increases appreciably [7]. 

Diarrhea can be caused by a variation of pathogens 

including many types of virus, bacteria and protozoa. One 

of the most perilous pathogen in relation to diarrhea is the 

rotavirus. Rotavirus is classified into several serotypes 

which can cause viral gastroenteritis [13]. Gastroenteritis is 

the inflammation of the gastrointestinal tract and has 

common symptoms of diarrhea, vomiting, fever and 

abdominal pains [9]. Although the pathogen usually infects 

the immune suppressed individuals like small children and 

older people, adults and youth are also at high risk of 

infection. Transmission of the virus occurs mainly through 

the fecal-oral route but indirect transmission through any 

object that is touched with contaminated hands, e.g. toys, 

furniture, door knobs and sink surfaces is also common. 

Rotavirus is stable in the environment thus if sanitation is 

poor, the contaminated surfaces can continue to spread the 

pathogen [10]. 

2. Methods 

This study subdivided the human population into four 

compartmental model; namely: susceptible individuals 

represent the number of people susceptible to the disease at 

the time t. Exposed individuals denote individuals who are 

effective contact with infected individuals who are probably 

infected. Infected individuals are the numbers of people who 

have been infected with the disease and are able to spread the 

disease to the susceptible individuals. Recovered individuals 

is the compartment used for those who infected and have 

recovered from the disease so that the total population will be 

N(t ) = S(t ) + E(t ) + I (t ) + R (t ). The model assumes direct 

transmission of diarrhea from infected individuals to 

susceptible individuals. However, water borne disease is 

largely contacted from environmental bacteria through 

contaminated water [2]. All human populations experience 

natural death at the rateμ. And the infected individuals die 

from diarrhea disease at the rateα. The susceptible population 

is increased by the rate of recruitment ⋀, either by 

immigration or birth rate and also increased by recovered 

individuals’ that has been recovered from infected individuals 

due to some rate of treatment⍵. We also assume that 

susceptible individuals reduced to exposed individual at a 

rate of effective contactβ. Exposed individuals are probably 

reduced into infected individuals at rate of infection σ due to 

infection. Due to infection rate α of infected individual 

reduced by death and some treatment ⍵ rate of infected 

individuals are probably recovered. 

2.1. Model Assumptions 

The following are the assumptions of the model: 

a. Susceptible populations are recruited by birth at a 

constant rate ⋀. 

b. Individuals in each group have the same natural death 

rate μ. 

c. Susceptible human can be infected by the infected 

humans. 

d. Infected human can die due to the infection. 

e. Infected human can recover due to some treatment. 

f. All new born-once are susceptible to infection. 

g. All the parameters which are used in this model are 

positive. 

h. ω ≈ μ + 	α. 

2.2. Model Flowchart and Equations Model Flow Chart 

 

Figure 1. The flow chart of the model. 

2.3. Model Equations 

Dynamic systems are set of equations which describes an 

event in nature that further describes primarily a time 

changing process [11]. The properties which characterize 

these dynamical equations are either finite or infinite 

dimensions or being non-deterministic or deterministic in 

nature. The description of these systems is by use of 

differential equations. Differential equations are defined as 

equations which contain a single or more derivatives which 

are of unknown functions. From figure 1 we have obtained 

the following ordinary differential equations (ODE) 


�
� = Λ + γR − βSI − μS
�
� = βSI − σE − μE							
�
� = σE − αI − ωI − μI
�
� = ωI − γR − μR							 ���
��
��

                       (1) 

Table 1. Description of variables of the model. 

Variables Description 

S(t) Human population size in susceptible compartment at any time t 

E(t) Human population size in exposed compartment at any time t 

I(t) Human population size in infected compartment at any time t 

R (t) Recovered human population at any time t 

Table 2. Description of parameters of the model. 

Parameters Interpretation ⋀ Recruitment rate of humans 

β Effective contact rate 

γ Human recover rate from disease by immunity loss 

ω Treatment rates given for infectious individuals 

µ Natural death rate for humans population 

α Human death rate due to diarrhoea disease 

σ Infected rate 
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2.4. The Invariant Region 

This is the region which the model solution lies positively. 

Consider the total human population N�(t) = 	S(t) + E(t) +I(t) + R(t). Taking the derivative of N�(t) with respect to 

time we have  


"#
� = 
�
� + 
�
� + 
�
� + 
�
�   

= Λ − μS − μE − μI − αI − μR = Λ − (	S + E + I + R)μ − αI = Λ − μN� − αI 
In the absence of diarrhea disease, there is no death, that is, α = 0, then 


"#
� ≤ Λ − μN�  

Applying Birkhoff and Rota’s theorem on a differential 

inequality, we have 


"#&'("# ≤ dt − − − − − − − − − − − − − −(∗)  

Integrating (∗) on both sides and applying the initial 

conditions we obtain N� ≤ &( ≤ +&'(",( - e'(�, which implies 

that, N� ≤ &(, as t→ ∞. Hence, all the solutions of system (1) 

are uniformly bounded. According to system (1), the feasible 

region of it can be written as: Ω� = 3(S, E, I, R) ∈ ℜ67, N� ≤ &(8. This is positively 

invariant and bounded. 

Hence the system is biologically meaningful and 

mathematically well-posed in the domain. 

3. Model Analysis 

3.1. Existence of the Equilibrium Points and Basic 

Reproduction Number 

The disease free equilibrium points of the model are its 

steady state solutions in the absence of infection or disease. 

To obtain the equilibrium points for the model we set the 

right hand side of (1) to zero, that is 


�
� = 0, 
�
� = 0, 
�
� = 0, 
�
� = 0  

Therefore the system of equations (1) becomes 	Λ + γR − βSI − μS = 0βSI − μE − σE = 0σE − μI − αI − ωI = 0ωI − γR − μR = 0 :                         (2) 

Then X< = (S∗, E∗, I∗, R∗)  is the equilibrium point of the 

model system (1). 

3.2. The Disease-Free Equilibrium Point 

Disease-free equilibrium points (D.F.E) are steady-state 

solutions where there is no diarrhea disease. We define the 

diarrhea infected classes as the human population that is 

either exposed, or infected. 

Hence, in the absence of infection, E∗ = 0, I∗ =0, and	R∗ = 0. 

Thus, the system (2) is reduced into Λ − µS = 0  which 

implies that S∗ = &(. 

So, the disease-free equilibrium point X< = (S∗, 0, 0, 0). 

Hence, X< = +&( , 0,0,0-. 

3.3. The Basic Reproduction Number, ?@ 

The basic reproduction number is the average number of 

secondary infection generated by infectious individual in his 

or her infectiousness. It is important in that it is directly 

related to the effort required to eliminate infection. Using the 

next generation matrix approach [15]. R<	is given by ρ(FV'C) 

(the spectral radius of the matrix FV'C ). The matrices F and 

V are given by 

V = 	 D(σ + μ) 0
0 (μ + α + ω)E 	and	F = 	 D0 βS

0 0 E  

Then we can find the inverse of the matrix V, which is 

given by 

F'C =	 G C(H7() 00 C((7I7J)K  

Therefore,	Lhe basic reproduction number, M< is :	
R<(	ρ(FV'C) 	= OP&((O7()((7Q	)((7Q7R)  

3.4. Local Stability Analysis 

This section treats the local stability of system (1) using 

the linearization technique. 

Let the system is re-defined as fC(S, E, I, R) = 	Λ + γR − βSI − μS
fT(S, E, I, R) = βSI − σE − μE

fU(S, E, I, R) = σE − μI − αI − ωI
f6(S, E, I, R) = ωI − γR − μR ���

�
���

              (3) 

Then, the Jacobian matrix for system (1 and 3) at the point 

(S, E, I, R) can be written as 
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J =
WXX
XXX
XYZ[\Z� Z[\Z� Z[\Z� Z[\Z�Z[]Z� Z[]Z� Z[]Z� Z[]Z�Z[^Z� Z[^Z� Z[^Z� Z[^Z�Z[_Z� Z[_Z� Z[_Z� Z[_Z� àaa

aaa
b
=

WXX
XXX
Y−μ 0 −βS γ	

0 −(σ + μ) βS 0
0 σ −(α + μ + ω) 0
0 0 ω −(μ + γ)àa

aaa
b
                                        (4) 

Theorem 1 The disease free equilibrium point,X< =	+⋀( , 0,0,0- is locally asymptotically stable if R< < 1˙and R< < R((7e) 
otherwise unstable. 

The Jacobian of the system (4) at X< =	+&( , 0,0,0- is given by 

J(X<) =
WX
XX
XX
Y−μ 0 −β &( γ	

0 −(σ + μ) β &( 0
0 σ −(α + μ + ω) 0
0 0 ω −(μ + γ)à

aa
aa
b
                                                      (5) 

Let k be the Eigen value. Then we have |J(X<) − kI	| = 0 where I is a 4×4 identity matrix. Thus, we have 

|J(X<) − kI	| = i
i−μ − k 0 −β &( γ	

0 −(σ + μ) − k β &( 0
0 σ −(α + μ + ω) − k 0
0 0 ω −(μ + γ) − ki

i = 0                                        (6) 

Direct computations show that this Jacobian matrix has the following characteristic equation: 

(σ + μ + k)(μ + α + k	)(μ + ω + α + k)(μ + γ + k) − P&O( (μ + ω + α + k)(μ + γ + k) = 0  

Ak6 + BkU + CkT + Dk	 + E = 0 

Where A = 1	B = (σ + 4μ + ω + γ + 2α)	
C = (μ + α)(σ + μ) + (σ + 2μ + α)(2μ + ω + α + γ) + (μ + ω + α)(μ + γ) − OP&(  	

D = (μ + α)(σ + μ)(γ + 2μ + ω + α) + (2μ + σ + α)(μ + ω + α)(μ + γ) − OP&( (2μ + ω + α + γ)  

E = (μ + α)(σ + μ)(μ + ω + α)(μ + γ) − OP&( (μ + ω + α)(μ + γ)  

Due to the complexity in determining the signs of the remaining Eigen values, we employ Routh-Hurwitz conditions for 

stability. The Routh-Hurwitz conditions to ensure that all roots of (5) have negative real parts are A > 0, B > 0, E > 0	and BC	 > 	qr, str	 > ADT + BT	Eclearly A and B are positive. For C, D and E are to be positive, set 

(μ + α)(σ + μ) + (σ + 2μ + α)(2μ + ω + α + γ) + (μ + ω + α)(μ + γ) − OP&( > 0  

(μ + α)(σ + μ) + (σ + 2μ + α)(2μ + ω + α + γ) + (μ + ω + α)(μ + γ) > OP&(   

For D to be positive, set 

(μ + α)(σ + μ)(γ + 2μ + ω + α) + (2μ + σ + α)(μ + ω + α)(μ + γ) − OP&( (2μ + ω + α + γ) > 0  
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(μ + α)(σ + μ)(γ + 2μ + ω + α) + (2μ + σ + α)(μ + ω + α)(μ + γ) > OP&( (2μ + ω + α + γ)  

For E to be positive, set 

(μ + α)(σ + μ)(μ + ω + α)(μ + γ) − OP&( (μ + ω + α)(μ + γ) > 0  

This leads to 1 − R< ((7Q)R > 0 

From the assumption we have ω ≈ μ + α so that 1 − R< >0, since R< = OP&((O7()((7Q	)((7Q7R) 
This can be true if and only if R< < 1. Hence, by Routh-

Hurwitz criterion, all the eigen values have negative real 

parts. 

This shows that X< locally asymptotically stable if R< < 1, 

and unstable if R< > 1.	
3.5. Global Stability of the Disease-Free Equilibrium Point 

We study the global asymptotic stability of the endemic 

equilibrium using LaSalle’s invariance principle [11]. 

Theorem: If R< < 1, then the disease free equilibrium of the 

model is globally asymptotically stable in the feasible domain. 

Proof: By the comparison theorem, the rate of change of 

the variables representing the infected components of model 

system (2) can be re-written as 

uEv(t)Iv(t) w = (F − V) uEI w − uβI(1 − S)0 w  
where the matrices F and V are defined by the expressions 

(12) respectively. But we also note that S≤ &( for allt ≥ 0	in 

Ω›. 

Thus 

uEv(t)Iv(t) w ≤ uEI w                                (7) 

Using the fact that the Eigen values of the matrix (F - V) 

all have negative real parts, it follows that the linearized 

differential inequality system [16], is stable whenever R< <1. Consequently, (E, I, R	) = 	 (0, 0, 0) ast→ ∞and evaluating 

system (2) at	E = I = 	R = 0 gives S→ &(, for R< < 1. Hence, 

the disease-free equilibrium, X< , is globally asymptotically 

stable for R< < 1. 

3.6. The Endemic Equilibrium Point 

We shall now study the existence of the endemic 

equilibrium state of the modified model. Endemic 

equilibrium point XC  is a steady-state solution, where the 

disease persists in the population. For the existence and 

uniqueness of endemic equilibrium XC=(S∗ , E∗ , I∗ , R∗ ), its 

coordinates should satisfy the conditions: XC=(S∗, E∗, I∗,R∗)> 0. 

From the system of equation the endemic equilibrium 

point is 

S∗ = +(7OPO - (μ + α)  

E∗ = +(	(7Q	)(((7O)'POPO - + (	(7Q	)(e7()eRO'(	(7Q	)((7e)((7O)-  

I∗ = +(	(7Q	)(((7O)'POPO - + (e7()eRO'(	(7Q	)((7e)((7O)-  

R∗ = + R(y((7O)'RPOPeRO'P(	(7Q	)((7e)((7O)-  

The result shows us endemic equilibrium point is exists 

and it is unique. 

3.7. Local Stability of Endemic Equilibrium Point 

We analyze the stability of the endemic equilibrium by 

linearizing the above system of differential equations (1) to 

give the Jacobian matrix. The Jacobian matrix is computed 

by differentiating each system equation (1) with respect to 

the state variables. Endemic equilibrium points are steady-

state solutions where there is diarrhea infection and this 

equilibrium points are obtained by setting the right hand 

sides of the model equations (1) equals to zero. The local 

stability of the endemic equilibrium point XC  is decided by 

considering the sign of the eigenvalues of the Jacobian 

matrix of the system (1). 

Theorem: The positive equilibrium XC  of system (1) is 

locally asymptotically stable if R< > 1 and unstable if R< < 1. 

3.8. Sensitivity Analysis 

Sensitivity analysis is the study carried out to determine 

the input parameters which affect the output of a model most. 

Let Szdenote the sensitivity ofR< , and then the sensitivity 

index R< with respect to any parameter h is: 

Sz = Z�,Zz z�, 	(∗) 	
The larger the magnitude of the sensitivity index leads to 

more sensitivity R<with respect to that parameters. 

Z�,ZO = 1 − OO7( > 0,
Z�,ZP = 1 > 0, 

Z�,Z& = 1 > 0, Z�,ZR = − R]R7(7Q < 0, Z�,Z( = − (^(7Q7O < 0 and 
Z�,ZQ = − (^Q7(7R < 0  
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Figure 2. Sensitivity analysis of reproduction number with respect to treatment rate. 

Figure 2 show that when the treatment rate is increasing 

the reproduction number is decreasing. Hence, treatment of 

exposed human population has negative impact of disease 

transmission. 

4. Numerical Simulation 

Numerical Simulations of the dynamic model were carried 

out by MATLAB functionode 45, using the Runge-Kutta of 

order four. The set of parameter values in table we have used 

to investigate the effect of treatment in the control of severe 

water borne disease like diarrhea are from literature and 

assumptions. Four hypothetical cases were considered and in 

each case, the probability that individuals who are exposed to 

the diseases will progress to infectious class depends on the 

level of immunity individual has. 

Some of the parameter values used: 

i. Natural mortality rate of individuals, (μ): The time unit 

is set at year and the constant natural mortality rate, μ 

is assumed to be inversely related to life expectancy 

birth which is approximately 50 years.	μ = C{< = 0.02 

per year. 

ii. Recruitment rate, ( Λ ): The recruitment rate, ( Λ ) 

controls the total population sizes because the 

asymptotic carrying capacity of the population is 
&(. For 

purposes of this study, we shall set the recruitment rate 

at 24 individuals per year. 

iii. Contact rate (β): In this case the contact rate assumed 

to be constant. It is 0.35. 

iv. Human death rate due to diarrhea disease α, va Modeling 

the rises from country to country. It is as low as 0.07 in 

developed countries but reaches 0.365 per year in some 

African countries. Thus we take α =0.365 [12]. 

Table 3. The parameter values of the model. 

Parameters Case1 Case2 Case3 Case4 Reference 

Λ 24 24 24 24 estimated 

µ 0.02 0.02 0.02 0.02 [12] 

β 0.35 0.35 0.35 0.35 estimated 

σ 0.4 0.4 0.4 0.4 estimated 

α 0.365 0.365 0.365 0.365 [17] 

ω 0.4 0.4 0.4 0.4 estimated 

γ 0.98 0.98 0.98 0.98 estimated 

 

And the following initial conditions have been considered; S|0} = 1150; E|0} = 750; I|0} = 450; R|0} = 95 at time t< = 0 and t[ =10 

5. Result and Discussion 

This has been done to show the dynamics of the disease in 

the population when there are no interventions. The 
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numerical results should examine the effect of parameters on 

the transmission of diarrhea disease which is used in the 

present model. Let us discuss on the following some 

numerical outputs. 

 

Figure 3. Effect of infected rate �on exposed compartment. 

 

Figure 4. Effect of treatment rate ω on Recover compartment. 

From figure 3, we observe that the infected rate σ is 

inversely proportional with the exposed human population. 

i.e. whenever the rate of infection increases the exposed 

human compartment decreases through the time. 

In figure 4 we can observe that whenever treatment rate is 

increased throughout the time proportionally the recovered 

human population increases. 

6. Conclusion 

In this study, we have formulated a mathematical model 

describing the transmission of diarrhea disease with 

treatment as a control. This model has shown significance of 

treatment in preventing transmission of diarrhea disease in 

human population. The basic reproduction number has been 

evaluated using next generation matrix method. From the 

reproduction numberR< we conclude that; when R< c 1	the 

diarrhea disease becomes decrease from the society over a 

period of time. When R< p 1  then the diarrhea disease 

becomes endemic. Over all, the findings of the numerical 

simulation shown that effective treatment is sufficient in 

eradicating diarrhea disease.. It is also indicated that the 

recovered human population increases as effective treatment 

is delivered. 
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