

Science Journal of Business and Management
2013; 1(1): 19-25

Published online June 30, 2013 (http://www.sciencepublishinggroup.com/j/sjbm)

doi: 10.11648/j.sjbm.20130101.14

Robust project scheduling with two constrained
resources

Rong-Hwa Huang, Chang-Lin Yang
*

Department of Business Administration, Fu Jen Catholic University, Taiwan

Email address:
026299@mail.fju.edu.tw(R. Huang), 051125@mail.fju.edu.tw(C. Yang)

To cite this article:
Rong-Hwa Huang, Chang-Lin Yang. Robust Project Scheduling with Two Constrained Resources. Science Journal of Business and

Management. Vol. 1, No. 1, 2013, pp. 19-25. doi: 10.11648/j.sjbm.20130101.14

Abstract: Distinct from ordinary project scheduling to minimize project completion time, this study conducts robust

project scheduling with two resources constraints. In this study, actual start time of each operation is dynamic. The latest

finish time minus actual finish time is the slack time available to each operation. The objective of this study is to determine all

project operation times and slack times. This study utilized a novel parallel tabu search scheme to simulate multiple CPUs

searching for the optimum value. The parallel tabu search outperformed the conventional tabu search in terms of exploration.

For model verification, test datasets from the project scheduling problem library (PSPLIB) were adopted. Analytical results

show that parallel tabu search exceeded the conventional tabu search in optimizing the objective value.

Keywords: Resource Constraint, Project Scheduling, Parallel Tabu Search, Slack Time, Robustness,

Project Completion Time

1. Introduction

Managers often consider situations and resource

constraints during decision-making. However, as humans

have limited rationality, perfect forecasting is generally

impossible. Thus, each decision is companied by risk. In

real business manufacturing environments, projects involve

many decisions. An unexpected interference can result in

enormous losses. Under extreme global competition,

businesses must focus on project scheduling to enhance

cost efficiency and service quality. Managers hope to

achieve effective existing resource allocation in certain

situations with the support of project scheduling.

Past studies demonstrated that solving the

resource-constrained project scheduling problem (RCPSP)

is difficult and complex. The two main models that have

been applied to solve the RCPSP are mathematical and

heuristic. According to Bell and Han (1991), for a project

with more than 50 operations, mathematical models take

considerable time to construct and compute. Solution

effectiveness is therefore limited, and obtaining the

optimum value is not guaranteed. Mathematical models

only suit small-scale problems and are not utilized for

practical applications.

Cogill and Hindi (2007) and Ibaraki et al. (2008) utilized

integer programming to minimize completion time for the

RCPSP. A large number of decision variables and complex

constraints reduce solving effectiveness. Davis (1975)

applied linear programming and dynamic programming to

solve the RCPSP and encountered the same effectiveness

problem. For large-scale problems, computation times of

mathematical models grow exponentially as most

scheduling problems are (NP)-hard. Therefore, heuristic

methods outperform mathematical models by providing

near optimum solutions in an acceptable amount of time,

which is meaningful when compared to an optimum

solution without time efficiency.

Kelley (1963), who first developed the RCPSP, showed

that the parallel method performed better than the series

method. Boctor (1990) tested the RCPSP with a case and

developed an operational priority selection rule. With

improvements in computer science and project scheduling

techniques, several optimization algorithms have been

developed and solving effectiveness and quality have

progressed. Dorigo et al. (1997) and Merkel et al. (2002)

developed the ant colony optimization (ACO) scheme that

uses pheromone and the state transition rule to solve the

RCPSP; they also compared the results with simulated

annealing and tabu search. Glover (1977) used tabu search

to solve the RCPSP. Multiple neighborhood searches are

utilized to avoid local optimization. A flexible memory

structure can record moving decisions of different cycles in

20 Rong-Hwa Huang et al.: Robust Project Scheduling with Two Constrained Resources

the short and long term to escalate from local optimization.

Notably, tabu search is widely applied to scheduling and

NP-hard problems. Minghe (2006) solved the factory

position problem with a tabu search and compared tabu

search with other heuristics. Huang and Liao (2008)

combined ACO and tabu search to optimize the scheduling

problem. Taillard (1991) and Firchter (1994) simulated

multiple processors in tabu search to accelerate the solving

process and obtain better solving quality compared to that

of conventional tabu search. Bozejko and Wodecki (2004)

utilized block property to distribute computation tasks and

reduce communication among processors during tabu

search. Al-Fawzan and Mohamed (2005) solved the

multi-objective RCPSP of minimizing project completion

time and maximizing slack time using tabu search. Wang

(2005) developed constraint satisfaction problems (CSPs)

to overcome uncontrollable interference as constraint

functions change and repair a possible breach of a

scheduling solution. This increased the flexibility of

conventional scheduling tools.

Most conventional studies assumed unlimited or one

resource constraint to minimize project completion time. To

further reflect real manufacturing conditions, this study

considers two resource constraints to minimize project

completion time and maximize slack time with a parallel

tabu search. Three sets of weights, (0.25, 0.75), (0.5, 0.5),

and (0.75, 0.25), are given to satisfy managers under

different situations. The objective is to determine the most

robust and efficient project schedule.

2. Integer Programming Model

This study considers the robustness of project scheduling

with multiple resource constraints. All activities are

non-preemptive and must be processed sequentially. Actual

activity start times are dynamic and depending on previous

activities. Resource consumption and processing time are

known and cannot be split. The difference in most recent

finish time and actual finish time is available slack for an

activity. An adjusted parameter determines the duration of

available slack among activities.

Since an activity with excessive available slack leads to

unnecessary resource consumption, a weight is assigned,

such that the effect of slack time on an objective function is

a decreasing function of time. Finally, the objective

function is to maximize the difference between the

weighted sum of available slack and weighted project

completion time.

2.1. Notification

n = total number of activities

jJ = activity of number j, 1, 2, ,j n= ⋯

0
J = dummy start activity

1n
J + = dummy end activity

jd = processing time of activity jJ , 1, 2,...,j n= ,

(0)jd ≥

jS = start time of activity jJ , 1, 2,...,j n=

jF = finish time of activity jJ , 1, 2,...,j n=

hjr
= labor consumed by activity jJ per unit time,

1, 2,...,j n=

mjr
= machine hourly consumption of activity jJ per unit

time, 1, 2,...,j n=

h
R = labor limit per unit time

m
R = machine hour limit per unit time

b = confirmed project start time

t = scheduling time of a project, 1,2,...,t T=

T = overall project processing time

jD = available slack for activity jJ

jRobust
= weighted available slack of activity jJ ,

1, 2,...,j n=

Robust = sum of slack for all activities with weight
3

w

max
C = project completion time (makespan)

0
ES = earliest start time of the dummy start activity

1n
ES + = earliest start time of the dummy end activity

jES = earliest start time of activity jJ , 1, 2,...,j n=

jLS = latest start time of activity jJ , 1, 2,...,j n=

jLF = latest finish time of activity jJ , 1, 2,...,j n=

1n
LF + = latest finish time of the dummy end activity

jPred = immediate predecessors set of activity jJ

jSucc = immediate successors set of activity jJ

1
w = weight of Robust

2
w = weight of

max
C

3
w = decreasing rate of activity jJ available slack

2.2. Mathematical Model

Objective function:

1 2 max
MaxZ w Robust w C= ⋅ − ⋅ (1)

Constraints:

1

n

j

j

Robust Robust
=

=∑ (2)

() 3

1

1 1
jD

j

x

Robust x w
=

= − − ⋅  ∑ (3)

j j jD LF F= − ; 1, 2,...,j n∀ = (4)

{ }min
j i

LF S= ; i jJ Succ∈ ; i j≠ ; 0,1, ,...,i n∀ = ;

0,1,...,j n∀ = (5)

 Science Journal of Business and Management 2013; 1(1): 19-25 21

j j jF S d= + ; 1, 2,...,j n∀ = (6)

0
ES b= (7)

{ }max
j i

ES F= ; Pri jJ ed∈ ; i j≠ ; 1, 2,..., 1i n∀ = + ;

1, 2,..., 1j n∀ = + (8)

j jS ES≥ ; 1, 2,...,j n∀ = (9)

1n max
ES C+ = (10)

1max n
C LF += (11)

1

n

hj hjt h

j

r k R
=

⋅ ≤∑ ; { t time on processing is J1

otherwise0

j=hjtk ;

1,2,...,t T= (12)

1

n

mj mjt m

j

r k R
=

⋅ ≤∑ ; { t time on processing is J1

otherwise0

j=mjtk ;

1,2,...,t T= (13)

1

n

j

j

T d
=

=∑ (14)

2.3. Interpretation

Objective function:

(1) Maximize project robustness and minimize project

completion time.

(2) Constraints:

(3) Project robustness is the sum of available slack for

all weighted activities.

(4) Weighted available slack of activity Jj.

(5) Available slack of activity Jj is the difference

between latest finish time and actual finish time.

(6) Latest finish time of activity Jj is the difference

between minimum actual start time in its successor

set.

(7) Actual completion time of activity Jj is the sum of

its actual start time and processing time.

(8) Earliest start time of the dummy start activity is the

confirmed project start time.

(9) Earliest start time of activity Jj is the maximum

actual finish time in its predecessor set.

(10) Actual start time of Jj is not less than its earliest

start time.

(11) Earliest start time of the dummy end activity equals

project completion time.

(12) Project completion time equals latest finish time of

the dummy end activity.

(13) Labor consumption of activity Jj is not larger than

the labor limit per unit time.

(14) Consumption of machine hours by activity Jj does

not exceed the machine hour limit per unit time.

(15) Overall project processing time equals the sum of

processing times for all activities.

3. Algorithm

Tabu search has a better ability to avoid repeat solutions

than other heuristics. However, tabu search can relatively

easily fall into a local optimization. The parallel tabu search

simulates multiple processors to randomly generate a start

solution simultaneously, begins searching in neighborhoods,

and then moves to the best solution in a neighborhood or a

solution that satisfies the aspiration criterion. The route is

memorized in a tabu list to avoid repeat searches.

3.1. Parallel Tabu Search Algorithm

Figure 1 shows the parallel tabu search procedure in this

study.

Figure 1. Procedures for solving robust project scheduling

Step 1: Simulate multiple CPUs; each
i

CPU generates

a start solution
i

S .

Step 2: Search for the best solution,
k

S , in a

neighborhood.

Step 3: Determine whether
k

S is searched by other

i
CPU s. If searched, go to step 8; otherwise, go to

step 4.

Step 4: Determine whether
k

S is in a tabu list. If yes, go

to step 5; otherwise, go to step 6.

22 Rong-Hwa Huang et al.: Robust Project Scheduling with Two Constrained Resources

Step 5: Determine whether
k

S satisfies the aspiration

criterion. If yes, go to step 6; otherwise, go to step

8.

Step 6: Determine whether Sk is better than S
*
. If yes, go

to step 7; otherwise, go to step 8.

Step 7: Movement confirmed. Refresh the tabu list and

let
*

kS S= .

Step 8: Determine whether the solution reaches the stop

criterion. If yes, end project; otherwise, go to

step 1.

3.2. Example

An illustration using the parallel tabu search to solve the

available slack scheduling problem is presented below.

Figure 2 shows the project network chart.

Figure 2. Project network chart

Assuming that search time of each
i

CPU is the same,

the related terms are set as follows:

1. Two recoverable resources are available (
i

R , 1,2i =).

Resource limits are
1

6R = and
2

6R = .

2.
1

w = 0.75,
2

w = 0.25, and
3

w =0.1.

3. Set tabu list length (8TL = , carrying 3).

4. Two processors (
i

CPU , 1,2i =).

5. Each
i

CPU randomly picks a start solution (
i

S) to

begin searching.

End search if any of the following situations are

encountered.

1. Maximum start solution transferring time of
i

CPU is

1.

2. Unimproved times of
i

CPU are set to one;

3. Both
1

CPU and
2

CPU stop searching.

Begin search:

The
1

CPU randomly generates a start solution,

*

1 (1.075)S S= = − ; the processing sequence is

1-2-3-4-5-6-7-8. When searching for best neighbor solution,

0.35
k

S = , the processing sequence is 1-2-3-4-6-5-7-8. This

move is not repeated and not in the tabu list. Let
*

0.35kS S= = .

Sequence(Jj) jRobust

1

n

j

j

Robust
=
∑ max

C 1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑ TL

1-2-3-4-5-6-7-8 J4:1+0.9 1.9 10 0.75x1.9-0.25x10=(-1.075)

(5,6)
1-2-3-4-6-5-7-8

J2:1+0.9

J4:1+0.9
1.9+1.9=3.8 10 0.75x3.8-0.25x10=0.35

Thus,
*

1 0.35S S= =
, and the processing sequence is

1-2-3-4-6-5-7-8. When searching for the best neighbor

solution,
0.6

k
S =

, the processing sequence is

1-2-3-4-6-7-5-8. Movement is sustained since it is not

repeated or in the tabu list. Let
*

0.6kS S= =
.

Sequence(Jj) jRobust

1

n

j

j

Robust
=
∑

max
C 1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑ TL

1-2-3-4-6-5-7-8
J2:1+0.9

J4:1+0.9
1.9+1.9=3.8 10 0.75 3.8 0.25 10 0.35× − × =

(5,7)

1-2-3-4-6-7-5-8
J2:1+0.9

J4:1+0.9
1.9+1.9=3.8 9 0.75 3.8 0.25 9 0.6× − × =

Thus,
*

1 0.6S S= =
, and the processing sequence is

1-2-3-4-6-7-5-8. When searching for best neighbor solution,

0.6
k

S =
, the processing sequence is 1-2-3-4-6-7-8-5. Since

MaxZ is unimproved, this satisfies the stop criterion and

1
CPU

 stops searching.

Sequence(Jj) jRobust

1

n

j

j

Robust
=
∑

max
C 1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑ TL

1-2-3-4-6-7-5-8
J2:1+0.9
J4:1+0.9 1.9+1.9=3.8 9 0.75x3.8-0.25x9=0.6

(5,8)

1-2-3-4-6-7-8-5
J2:1+0.9

J4:1+0.9
1.9+1.9=3.8 9 0.75x3.8-0.25x9=0.6

Notably, 2
CPU

 randomly generated a start solution
*

2 0.025S S= =
, and the processing sequence is

 Science Journal of Business and Management 2013; 1(1): 19-25 23

1-3-2-4-6-5-7-8. When searching for best neighbor solution,

0.35
k

S =
, the processing sequence is 1-2-3-4-6-5-7-8.

Thus, k
S

repeats the preceding solution obtained by

1
CPU

, repeat the search.

Sequence(Jj) jRobust

1

n

j

j

Robust
=
∑

max
C 1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑ TL

1-3-2-4-6-5-7-8
J3:1

J4:1+0.9+0.8
1+2.7=3.7 11 0.75x3.7-0.25x11=0.025

(2,3)

1-2-3-4-6-5-7-8
J2:1+0.9

J4:1+0.9
1.9+1.9=3.8 10 0.75x3.8-0.25x10=0.35

Notably, 2
CPU

 randomly generated a start solution
*

2 0.275S S= =
, and the processing sequence is

1-2-3-4-7-6-5-8. When searching for the best neighbor

solution,
0.6

k
S =

, the processing sequence is

1-2-3-4-6-7-5-8. Since 2
CPU

repeats the preceding best

neighbor solution obtained by 1
CPU

, repeat the search.

However, maximum start transferring times are set to 1 and

satisfie the stop criterion; thus, 2
CPU

 stops searching.

Sequence(Jj) jRobust

1

n

j

j

Robust
=
∑

max
C 1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑ TL

1-2-3-4-7-6-5-8
J3:1

J4:1+0.9+0.8
1+2.7=3.7 10 0.75x3.7-0.25x10=0.275

(6,7)

1-2-3-4-6-7-5-8
J2:1+0.9

J4:1+0.9
1.9+1.9=3.8 9 0.75x3.8-0.25x9=0.6

Both 1
CPU

 and 2
CPU

 stop searching, end the

algorithm. The objective value found by 1
CPU

 is 0.6 (Fig.

3).

Figure 3. Tabu search result

4. Data Test and Analysis

This study obtains test data from the PSPLIB to verify

algorithm effectiveness and robustness.

4.1. Test Data

To verify algorithm performance, 30 test datasets were

acquired from the PSPLIB for projects with 30, 60, 90, and

120 activities. Each test dataset has a tabu list length and

two recoverable resources, labor (R1) and machine hour

(R2). Table 1 shows the test data types. The test program is

complied with C++ language and executed on an 2.21GHz

AMD Athlon(tm) 64×2 Dual Core Processor 4200+, with

1.00GB RAM.

Table 1. Test data types

Numbers of

work (n)

Constraints of

1
R

Constraints of

2
R

Length of

TL (n)

30 20 20 6

60 20 20 8

90 20 20 10

120 30 30 12

4.2. Algorithm Effectiveness

This research simulates 17 types of CPU numbers 1, 5,

10, 15, 20, 25, …, 80. Each type is given three different

weights—(w1, w2)=(0.75, 0.25), (w1, w2)= (0.5, 0.5), and

(w1, w2)=(0.25, 0.75)—for available slack and project

completion time. Let
3

w =0.1 for all situations. Table 2

shows the effect of CPU numbers on the optimum solution

and computation time. Average solutions and computation

time for the 30 datasets in each project scale and CPU

numbers are as follows.

Figures 4 and 5 show data test results. The graphs

indicate that when the number of CPUs exceeds 50,

solutions tend to converge and computation time keeps

increasing. For cost efficiency, this study suggests that 50

CPUs in a parallel tabu search is the most suitable number

for the RCPSP.

24 Rong-Hwa Huang et al.: Robust Project Scheduling with Two Constrained Resources

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

CPU number

Z
 v

al
u
e

30

60

90

120

Figure 4. Effective analyses – Z value

0

50

100

150

200

250

300

350

400

450

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

CPU number

S
ec

o
n

d

30

60

90

120

Figure 5. Effective analyses – execution time

Table 2. Effectiveness test result

4.3. Algorithm Robustness

For the robustness test, one dataset is chosen for each of

the four project scales. With 3 different weights of available

slack and project completion time, each dataset is tested 30

times. Standard deviation is computed to verify robustness.

According to effectiveness test results, only 40, 50, 60,

70, and 80 CPUs are included in robustness test for time

efficiency. Each number of CPUs is tested 30 times with

four project scales of 30, 60, 90, and 120. Table 3 shows

test results.

Standard deviation decreases as the number of CPUs

increases (Fig. 6). Standard deviation increases as project

scale increases. The explanation is that the size of the

solution set increases when project scale increases. Notably,

50 CPUs was the most stable. In the effectiveness test, 50

CPUs in total was both effective and robust for parallel

tabu search solving the RCPSP.

Table 3. Robustness test result

Numbers of works (n) 30 60 90 120

CPU

Number

CPU 40 0.42 2.80 5.28 7.22

CPU 50 0.35 2.43 3.78 6.62
CPU 60 0.39 2.24 3.81 7.29

CPU 70 0.36 2.38 3.80 6.82

CPU 80 0.37 2.59 3.78 6.13

* Standard deviation= ()2

1

1

1

n

i

n

s x x
n =

= −
− ∑

0

1

2

3

4

5

6

7

8

CPU 40 CPU 50 CPU 60 CPU 70 CPU 80

30

60

90

120

Figure 6. Standard deviation of each CPU numbers - number of work is

from 30 to120

No. of
work

Amount (n)

of CPU

30 60 90 120

Z
Value

Execution
Time (sec)

Z
Value

Execution
Time (sec)

Z
Value

Execution
Time (sec)

Z
Value

Execution
Time (sec)

1 -16.14 0.25 -38.79 2.00 -67.71 5.70 -83.48 6.74

5 -9.67 0.68 -21.84 5.04 -40.76 16.13 -28.75 36.16

10 -8.86 1.25 -16.65 9.62 -33.23 36.87 -20.11 45.04

15 -7.04 1.81 -15.87 14.28 -29.22 48.85 -15.09 69.76

20 -7.41 2.44 -14.36 18.79 -28.85 67.64 -11.21 107.15

25 -6.31 2.88 -13.51 24.66 -26.87 82.44 -7.60 128.15

30 -6.18 3.67 -13.88 26.78 -23.91 95.50 -9.21 175.36

35 -6.49 4.26 -13.38 32.55 -24.83 114.57 -6.20 190.86

40 -6.23 4.80 -11.76 38.32 -24.57 132.10 -6.61 215

45 -5.91 5.44 -13.48 44.50 -24.98 137.92 -5.86 245.71

50 -6.19 5.98 -12.25 47.43 -24.04 160.22 -3.97 289.15

55 -4.98 6.53 -10.56 54.55 -24.76 189.00 -4.05 319.71

60 -6.02 7.56 -10.87 57.76 -24.26 196.69 -2.96 350.45

65 -5.49 8.12 -10.84 61.26 -23.38 213.36 -2.20 359.78

70 -5.57 9.53 -10.56 65.50 -22.55 221.95 -1.35 390.51

75 -5.38 10.24 -9.54 68.41 -22.52 229.37 -3.06 410.08

80 -4.21 11.50 -9.62 75.31 -22.65 242.18 -2.00 421.46

 Science Journal of Business and Management 2013; 1(1): 19-25 25

5. Conclusion

Previous project scheduling studies only minimized

project completion time. However, in real business

situations, unexpected interference exists and projects can

be delayed. In this study, a novel parallel tabu search

algorithm was applied to solve the RCPSP with 2 robust

two recoverable resources. With different weights, a

researcher can decide whether to minimize delay or

minimize project completion time. Under unstable or risky

conditions, minimizing delay is recommended.

Test datasets are drawn from the PSPLIB. The four

projects have 30, 60, 90, 120 activities; each is tested with

30 different datasets. Two recoverable resources exist. Let

3
w =0.1. The researcher tested weights—(

1
w ,

2
w)= (0.75,

0.25), (
1

w ,
2

w)=(0.5, 0.5), and (
1

w ,
2

w)= (0.25,

0.75)—with the number of simulated CPU of 1, 5, 10, …,

80, totally 17 types of CPU number. The objective value

improved as the number of CPUs increased. At 40 CPUs,

the average solution converged while computation time

continued increasing. With 50 CPUs, standard deviation

was convergent in the robustness test. Therefore, for

effectiveness and robustness, 50 CPUs is optimal for a

robust parallel tabu search.

References

[1] Al-Fawzan, M.A. and Mohamed, H. (2005), “A bi-objective
model for robust resource-constrained project scheduling”,
International Journal of Production economics, 96(2),
175-187.

[2] Bell, C.E. and Han, J., (1991), “A new heuristic solution
method in resource-constrained project scheduling”, Naval
Research Logistics, 38(3), 315-331.

[3] Boctor, F., (1990), “Some efficient multi-heuristic
procedures for resource-constrained project scheduling”,
European Journal of Operational Research, 49(1), 3-13.

[4] Bozejko, W. and Wodecki, M., (2004), Parallel tabu search
method approach for very difficult permutation scheduling
problems’, Parallel Computing in Electrical Engineering
2004 International Conference, 156-161.

[5] Cogill, R. and Hindi, H., (2007), “Optimal routing and
scheduling in flexible manufacturing systems using integer
programming”, IEEE Conference on Decision and Control,

4095-4102.

[6] Davis, E.W. and Patterson, J.H., (1975), “A comparison of
heuristic and optimum solutions in resource-constrained
project scheduling”, Management Science, 21(8), 944-955.

[7] Dorigo, M. and Gambardella, L.M., (1997), “Ant colony

system: a cooperative learning approach to the traveling

salesman problem”, IEEE Transactions on Evolutionary

Computation, 1(1), 53-66.

[8] Fiechter, C.N., (1994), “A parallel tabu search algorithm for

large traveling salesman problems”, Discrete Applied

Mathematics, 51(3), 243-267.

[9] Glover, F., (1977), Tabu Search, Kluwer Academic

Publishers, Boston.

[10] Huang, K.L. and Liao, C.J., (2008), “Ant colony optimization

combined with tabu search for the job shop scheduling

problem”, Computers & Operations Research, 35(4),

1030-1046.

[11] Ibaraki, T., Nomura, T. and Sasaki, M., (2008), “Integer

programming approaches to the problem of network

upgrading”, The 2008 International Symposium on

Applications and the Internet, 229-232.

[12] Kelley, J.E., (1963), The critical path method: resources

planning and scheduling, Prentice-Hall, Englewood Cliffs,

New Jersey.

[13] Minghe, S., (2006), “Solving the incapacitated facility

location problem using tabu search”, Computers &

Operations Research, 33(9), 2563-2589.

[14] Merkle, D., Middendorf, M. and Schmeck, H., (2002), “Ant

colony for resource constrained project scheduling”, IEEE

Transactions on Evolutionary Computation, 6(4), 333-346.

[15] Taillard, E., (1991), “Robust tabu search for the quadratic

assignment problem”, Parallel Computing, 17(4-5),

443-455.

[16] Wang, J., (2005), “Constraint-based schedule repair for

product development projects with time-limited constraints”,

International Journal of Production Economics, 95(3),

399-414.

