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Abstract: Distinct from ordinary project scheduling to minimize project completion time, this study conducts robust 

project scheduling with two resources constraints. In this study, actual start time of each operation is dynamic. The latest 

finish time minus actual finish time is the slack time available to each operation. The objective of this study is to determine all 

project operation times and slack times. This study utilized a novel parallel tabu search scheme to simulate multiple CPUs 

searching for the optimum value. The parallel tabu search outperformed the conventional tabu search in terms of exploration. 

For model verification, test datasets from the project scheduling problem library (PSPLIB) were adopted. Analytical results 

show that parallel tabu search exceeded the conventional tabu search in optimizing the objective value. 

Keywords: Resource Constraint, Project Scheduling, Parallel Tabu Search, Slack Time, Robustness,  

Project Completion Time 

 

1. Introduction 

Managers often consider situations and resource 

constraints during decision-making. However, as humans 

have limited rationality, perfect forecasting is generally 

impossible. Thus, each decision is companied by risk. In 

real business manufacturing environments, projects involve 

many decisions. An unexpected interference can result in 

enormous losses. Under extreme global competition, 

businesses must focus on project scheduling to enhance 

cost efficiency and service quality. Managers hope to 

achieve effective existing resource allocation in certain 

situations with the support of project scheduling. 

Past studies demonstrated that solving the 

resource-constrained project scheduling problem (RCPSP) 

is difficult and complex. The two main models that have 

been applied to solve the RCPSP are mathematical and 

heuristic. According to Bell and Han (1991), for a project 

with more than 50 operations, mathematical models take 

considerable time to construct and compute. Solution 

effectiveness is therefore limited, and obtaining the 

optimum value is not guaranteed. Mathematical models 

only suit small-scale problems and are not utilized for 

practical applications. 

Cogill and Hindi (2007) and Ibaraki et al. (2008) utilized 

integer programming to minimize completion time for the 

RCPSP. A large number of decision variables and complex 

constraints reduce solving effectiveness. Davis (1975) 

applied linear programming and dynamic programming to 

solve the RCPSP and encountered the same effectiveness 

problem. For large-scale problems, computation times of 

mathematical models grow exponentially as most 

scheduling problems are (NP)-hard. Therefore, heuristic 

methods outperform mathematical models by providing 

near optimum solutions in an acceptable amount of time, 

which is meaningful when compared to an optimum 

solution without time efficiency. 

Kelley (1963), who first developed the RCPSP, showed 

that the parallel method performed better than the series 

method. Boctor (1990) tested the RCPSP with a case and 

developed an operational priority selection rule. With 

improvements in computer science and project scheduling 

techniques, several optimization algorithms have been 

developed and solving effectiveness and quality have 

progressed. Dorigo et al. (1997) and Merkel et al. (2002) 

developed the ant colony optimization (ACO) scheme that 

uses pheromone and the state transition rule to solve the 

RCPSP; they also compared the results with simulated 

annealing and tabu search. Glover (1977) used tabu search 

to solve the RCPSP. Multiple neighborhood searches are 

utilized to avoid local optimization. A flexible memory 

structure can record moving decisions of different cycles in 
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the short and long term to escalate from local optimization. 

Notably, tabu search is widely applied to scheduling and 

NP-hard problems. Minghe (2006) solved the factory 

position problem with a tabu search and compared tabu 

search with other heuristics. Huang and Liao (2008) 

combined ACO and tabu search to optimize the scheduling 

problem. Taillard (1991) and Firchter (1994) simulated 

multiple processors in tabu search to accelerate the solving 

process and obtain better solving quality compared to that 

of conventional tabu search. Bozejko and Wodecki (2004) 

utilized block property to distribute computation tasks and 

reduce communication among processors during tabu 

search. Al-Fawzan and Mohamed (2005) solved the 

multi-objective RCPSP of minimizing project completion 

time and maximizing slack time using tabu search. Wang 

(2005) developed constraint satisfaction problems (CSPs) 

to overcome uncontrollable interference as constraint 

functions change and repair a possible breach of a 

scheduling solution. This increased the flexibility of 

conventional scheduling tools. 

Most conventional studies assumed unlimited or one 

resource constraint to minimize project completion time. To 

further reflect real manufacturing conditions, this study 

considers two resource constraints to minimize project 

completion time and maximize slack time with a parallel 

tabu search. Three sets of weights, (0.25, 0.75), (0.5, 0.5), 

and (0.75, 0.25), are given to satisfy managers under 

different situations. The objective is to determine the most 

robust and efficient project schedule. 

2. Integer Programming Model 

This study considers the robustness of project scheduling 

with multiple resource constraints. All activities are 

non-preemptive and must be processed sequentially. Actual 

activity start times are dynamic and depending on previous 

activities. Resource consumption and processing time are 

known and cannot be split. The difference in most recent 

finish time and actual finish time is available slack for an 

activity. An adjusted parameter determines the duration of 

available slack among activities. 

Since an activity with excessive available slack leads to 

unnecessary resource consumption, a weight is assigned, 

such that the effect of slack time on an objective function is 

a decreasing function of time. Finally, the objective 

function is to maximize the difference between the 

weighted sum of available slack and weighted project 

completion time. 

2.1. Notification 

n  = total number of activities 

jJ  = activity of number j, 1, 2, ,j n= ⋯  

0
J  = dummy start activity 

1n
J +  = dummy end activity 

jd  = processing time of activity jJ , 1, 2,...,j n= , 

( 0)jd ≥  

jS  = start time of activity jJ , 1, 2,...,j n=  

jF  = finish time of activity jJ , 1, 2,...,j n=  

hjr  
= labor consumed by activity jJ  per unit time, 

1, 2,...,j n=  

mjr  
= machine hourly consumption of activity jJ  per unit 

time, 1, 2,...,j n=  

h
R  = labor limit per unit time 

m
R  = machine hour limit per unit time 

b  = confirmed project start time 

t  = scheduling time of a project, 1,2,...,t T=  

T  = overall project processing time 

jD  = available slack for activity jJ  

jRobust  
= weighted available slack of activity jJ , 

1, 2,...,j n=  

Robust  = sum of slack for all activities with weight 
3

w  

max
C  = project completion time (makespan) 

0
ES  = earliest start time of the dummy start activity 

1n
ES +  = earliest start time of the dummy end activity 

jES  = earliest start time of activity jJ , 1, 2,...,j n=  

jLS  = latest start time of activity jJ , 1, 2,...,j n=  

jLF  = latest finish time of activity jJ , 1, 2,...,j n=  

1n
LF +  = latest finish time of the dummy end activity 

jPred  = immediate predecessors set of activity jJ  

jSucc  = immediate successors set of activity jJ  

1
w  = weight of Robust 

2
w  = weight of 

max
C  

3
w  = decreasing rate of activity jJ  available slack 

2.2. Mathematical Model 

Objective function: 

1 2 max
MaxZ w Robust w C= ⋅ − ⋅            (1) 

Constraints: 

1

n

j

j

Robust Robust
=

=∑                (2) 

( ) 3

1

1 1
jD

j

x

Robust x w
=

= − − ⋅  ∑              (3) 

j j jD LF F= − ; 1, 2,...,j n∀ =             (4) 

{ }min
j i

LF S= ; i jJ Succ∈ ; i j≠ ; 0,1, ,...,i n∀ = ; 

0,1,...,j n∀ =                              (5) 
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j j jF S d= + ; 1, 2,...,j n∀ =              (6) 

0
ES b=                     (7) 

{ }max
j i

ES F= ; Pri jJ ed∈ ; i j≠ ; 1, 2,..., 1i n∀ = + ; 

1, 2,..., 1j n∀ = +                              (8) 

j jS ES≥ ; 1, 2,...,j n∀ =              (9) 

1n max
ES C+ =                  (10) 

1max n
C LF +=                  (11) 

1

n

hj hjt h

j

r k R
=

⋅ ≤∑ ; { t time on processing is J1

otherwise0

j=hjtk ; 

1,2,...,t T=                 (12) 

1

n

mj mjt m

j

r k R
=

⋅ ≤∑ ; { t time on processing is J1

otherwise0

j=mjtk ; 

1,2,...,t T=                 (13) 

1

n

j

j

T d
=

=∑                  (14) 

2.3. Interpretation 

Objective function: 

(1) Maximize project robustness and minimize project 

completion time. 

(2) Constraints: 

(3) Project robustness is the sum of available slack for 

all weighted activities. 

(4) Weighted available slack of activity Jj. 

(5) Available slack of activity Jj is the difference 

between latest finish time and actual finish time. 

(6) Latest finish time of activity Jj is the difference 

between minimum actual start time in its successor 

set. 

(7) Actual completion time of activity Jj is the sum of 

its actual start time and processing time. 

(8) Earliest start time of the dummy start activity is the 

confirmed project start time. 

(9) Earliest start time of activity Jj is the maximum 

actual finish time in its predecessor set. 

(10) Actual start time of Jj is not less than its earliest 

start time. 

(11) Earliest start time of the dummy end activity equals 

project completion time. 

(12) Project completion time equals latest finish time of 

the dummy end activity. 

(13) Labor consumption of activity Jj is not larger than 

the labor limit per unit time. 

(14) Consumption of machine hours by activity Jj does 

not exceed the machine hour limit per unit time. 

(15) Overall project processing time equals the sum of 

processing times for all activities. 

3. Algorithm 

Tabu search has a better ability to avoid repeat solutions 

than other heuristics. However, tabu search can relatively 

easily fall into a local optimization. The parallel tabu search 

simulates multiple processors to randomly generate a start 

solution simultaneously, begins searching in neighborhoods, 

and then moves to the best solution in a neighborhood or a 

solution that satisfies the aspiration criterion. The route is 

memorized in a tabu list to avoid repeat searches. 

3.1. Parallel Tabu Search Algorithm 

Figure 1 shows the parallel tabu search procedure in this 

study. 

 

Figure 1. Procedures for solving robust project scheduling 

Step 1: Simulate multiple CPUs; each 
i

CPU  generates 

a start solution
i

S . 

Step 2: Search for the best solution,
k

S , in a 

neighborhood. 

Step 3: Determine whether
k

S is searched by other 

i
CPU s. If searched, go to step 8; otherwise, go to 

step 4. 

Step 4: Determine whether 
k

S is in a tabu list. If yes, go 

to step 5; otherwise, go to step 6. 



22 Rong-Hwa Huang et al.: Robust Project Scheduling with Two Constrained Resources 

 

 

Step 5: Determine whether 
k

S satisfies the aspiration 

criterion. If yes, go to step 6; otherwise, go to step 

8. 

Step 6: Determine whether Sk is better than S
*
. If yes, go 

to step 7; otherwise, go to step 8. 

Step 7: Movement confirmed. Refresh the tabu list and 

let
*

kS S= . 

Step 8: Determine whether the solution reaches the stop 

criterion. If yes, end project; otherwise, go to 

step 1. 

3.2. Example 

An illustration using the parallel tabu search to solve the 

available slack scheduling problem is presented below. 

Figure 2 shows the project network chart. 

 

Figure 2. Project network chart 

Assuming that search time of each 
i

CPU  is the same, 

the related terms are set as follows: 

1. Two recoverable resources are available (
i

R , 1,2i = ). 

Resource limits are
1

6R =  and
2

6R = . 

2. 
1

w  = 0.75, 
2

w  = 0.25, and 
3

w  =0.1. 

3. Set tabu list length ( 8TL = , carrying 3). 

4. Two processors (
i

CPU , 1,2i = ). 

5. Each
i

CPU  randomly picks a start solution (
i

S ) to 

begin searching. 

End search if any of the following situations are 

encountered. 

1. Maximum start solution transferring time of 
i

CPU  is 

1. 

2. Unimproved times of 
i

CPU  are set to one; 

3. Both 
1

CPU and
2

CPU  stop searching. 

Begin search: 

The 
1

CPU  randomly generates a start solution, 

*

1 ( 1.075)S S= = − ; the processing sequence is 

1-2-3-4-5-6-7-8. When searching for best neighbor solution,

0.35
k

S = , the processing sequence is 1-2-3-4-6-5-7-8. This 

move is not repeated and not in the tabu list. Let 
*

0.35kS S= = . 

 

Sequence(Jj) jRobust  

1

n

j

j

Robust
=
∑ max

C  1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑  TL  

1-2-3-4-5-6-7-8 J4:1+0.9 1.9  10 0.75x1.9-0.25x10=(-1.075) 

(5,6) 
1-2-3-4-6-5-7-8 

J2:1+0.9 

J4:1+0.9 
1.9+1.9=3.8 10 0.75x3.8-0.25x10=0.35 

 

Thus, 
*

1 0.35S S= =
, and the processing sequence is 

1-2-3-4-6-5-7-8. When searching for the best neighbor 

solution,
0.6

k
S =

, the processing sequence is 

1-2-3-4-6-7-5-8. Movement is sustained since it is not 

repeated or in the tabu list. Let 
*

0.6kS S= =
. 

 

Sequence(Jj) jRobust  

1

n

j

j

Robust
=
∑  

max
C  1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑  TL 

1-2-3-4-6-5-7-8 
J2:1+0.9 

J4:1+0.9 
1.9+1.9=3.8 10 0.75 3.8 0.25 10 0.35× − × =  

(5,7) 

1-2-3-4-6-7-5-8 
J2:1+0.9 

J4:1+0.9 
1.9+1.9=3.8 9 0.75 3.8 0.25 9 0.6× − × =  

 

Thus, 
*

1 0.6S S= =
, and the processing sequence is 

1-2-3-4-6-7-5-8. When searching for best neighbor solution,

0.6
k

S =
, the processing sequence is 1-2-3-4-6-7-8-5. Since 

MaxZ is unimproved, this satisfies the stop criterion and 

1
CPU

 stops searching. 

 

Sequence(Jj) jRobust  

1

n

j

j

Robust
=
∑  

max
C  1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑  TL 

1-2-3-4-6-7-5-8 
J2:1+0.9 
J4:1+0.9 1.9+1.9=3.8 9 0.75x3.8-0.25x9=0.6 

(5,8) 

1-2-3-4-6-7-8-5 
J2:1+0.9 

J4:1+0.9 
1.9+1.9=3.8 9 0.75x3.8-0.25x9=0.6 

 

Notably, 2
CPU

 randomly generated a start solution 
*

2 0.025S S= =
, and the processing sequence is 
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1-3-2-4-6-5-7-8. When searching for best neighbor solution,

0.35
k

S =
, the processing sequence is 1-2-3-4-6-5-7-8. 

Thus, k
S

repeats the preceding solution obtained by 

1
CPU

, repeat the search. 

 

Sequence(Jj) jRobust  

1

n

j

j

Robust
=
∑  

max
C  1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑  TL  

1-3-2-4-6-5-7-8 
J3:1 

J4:1+0.9+0.8 
1+2.7=3.7 11 0.75x3.7-0.25x11=0.025 

(2,3) 

1-2-3-4-6-5-7-8 
J2:1+0.9 

J4:1+0.9 
1.9+1.9=3.8 10 0.75x3.8-0.25x10=0.35 

 

Notably, 2
CPU

 randomly generated a start solution
*

2 0.275S S= =
, and the processing sequence is 

1-2-3-4-7-6-5-8. When searching for the best neighbor 

solution,
0.6

k
S =

, the processing sequence is 

1-2-3-4-6-7-5-8. Since 2
CPU

repeats the preceding best 

neighbor solution obtained by 1
CPU

, repeat the search. 

However, maximum start transferring times are set to 1 and 

satisfie the stop criterion; thus, 2
CPU

 stops searching. 

 

Sequence(Jj) jRobust  

1

n

j

j

Robust
=
∑  

max
C  1 2

1

n

j max

j

MaxZ w Robust w C
=

= ⋅ − ⋅∑  TL 

1-2-3-4-7-6-5-8 
J3:1 

J4:1+0.9+0.8 
1+2.7=3.7 10 0.75x3.7-0.25x10=0.275 

(6,7) 

1-2-3-4-6-7-5-8 
J2:1+0.9 

J4:1+0.9 
1.9+1.9=3.8 9 0.75x3.8-0.25x9=0.6 

 

Both 1
CPU

 and 2
CPU

 stop searching, end the 

algorithm. The objective value found by 1
CPU

 is 0.6 (Fig. 

3). 

 

Figure 3. Tabu search result 

4. Data Test and Analysis 

This study obtains test data from the PSPLIB to verify 

algorithm effectiveness and robustness. 

4.1. Test Data 

To verify algorithm performance, 30 test datasets were 

acquired from the PSPLIB for projects with 30, 60, 90, and 

120 activities. Each test dataset has a tabu list length and 

two recoverable resources, labor (R1) and machine hour 

(R2). Table 1 shows the test data types. The test program is 

complied with C++ language and executed on an 2.21GHz 

AMD Athlon(tm) 64×2 Dual Core Processor 4200+, with 

1.00GB RAM. 

Table 1. Test data types 

Numbers of 

work ( n ) 

Constraints of 

1
R  

Constraints of 

2
R  

Length of 

TL ( n ) 

30 20 20 6 

60 20 20 8 

90 20 20 10 

120 30 30 12 

4.2. Algorithm Effectiveness 

This research simulates 17 types of CPU numbers 1, 5, 

10, 15, 20, 25, …, 80. Each type is given three different 

weights—(w1, w2)=(0.75, 0.25), (w1, w2)= (0.5, 0.5), and 

(w1, w2)=(0.25, 0.75)—for available slack and project 

completion time. Let 
3

w  =0.1 for all situations. Table 2 

shows the effect of CPU numbers on the optimum solution 

and computation time. Average solutions and computation 

time for the 30 datasets in each project scale and CPU 

numbers are as follows. 

Figures 4 and 5 show data test results. The graphs 

indicate that when the number of CPUs exceeds 50, 

solutions tend to converge and computation time keeps 

increasing. For cost efficiency, this study suggests that 50 

CPUs in a parallel tabu search is the most suitable number 

for the RCPSP. 
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Figure 4. Effective analyses – Z value 
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Figure 5. Effective analyses – execution time 

Table 2. Effectiveness test result 

 

4.3. Algorithm Robustness 

For the robustness test, one dataset is chosen for each of 

the four project scales. With 3 different weights of available 

slack and project completion time, each dataset is tested 30 

times. Standard deviation is computed to verify robustness. 

According to effectiveness test results, only 40, 50, 60, 

70, and 80 CPUs are included in robustness test for time 

efficiency. Each number of CPUs is tested 30 times with 

four project scales of 30, 60, 90, and 120. Table 3 shows 

test results. 

Standard deviation decreases as the number of CPUs 

increases (Fig. 6). Standard deviation increases as project 

scale increases. The explanation is that the size of the 

solution set increases when project scale increases. Notably, 

50 CPUs was the most stable. In the effectiveness test, 50 

CPUs in total was both effective and robust for parallel 

tabu search solving the RCPSP. 

 

Table 3. Robustness test result 

Numbers of works (n) 30 60 90 120 

CPU 

Number 

CPU 40 0.42 2.80 5.28 7.22 

CPU 50 0.35 2.43 3.78 6.62 
CPU 60 0.39 2.24 3.81 7.29 

CPU 70 0.36 2.38 3.80 6.82 

CPU 80 0.37 2.59 3.78 6.13 

* Standard deviation= ( )2

1

1

1

n

i

n

s x x
n =

= −
− ∑  

0

1

2

3

4

5

6

7

8

CPU 40 CPU 50 CPU 60 CPU 70 CPU 80

30

60

90

120

 

Figure 6. Standard deviation of each CPU numbers - number of work is 

from 30 to120 

No. of 
work

Amount  (n) 

of CPU 

30 60 90 120 

Z 
Value 

Execution 
Time (sec) 

Z 
Value 

Execution 
Time (sec) 

Z 
Value 

Execution 
Time (sec) 

Z 
Value 

Execution 
Time (sec) 

1 -16.14 0.25 -38.79 2.00 -67.71 5.70 -83.48 6.74 

5 -9.67 0.68 -21.84 5.04 -40.76 16.13 -28.75 36.16 

10 -8.86 1.25 -16.65 9.62 -33.23 36.87 -20.11 45.04 

15 -7.04 1.81 -15.87 14.28 -29.22 48.85 -15.09 69.76 

20 -7.41 2.44 -14.36 18.79 -28.85 67.64 -11.21 107.15 

25 -6.31 2.88 -13.51 24.66 -26.87 82.44 -7.60 128.15 

30 -6.18 3.67 -13.88 26.78 -23.91 95.50 -9.21 175.36 

35 -6.49 4.26 -13.38 32.55 -24.83 114.57 -6.20 190.86 

40 -6.23 4.80 -11.76 38.32 -24.57 132.10 -6.61 215 

45 -5.91 5.44 -13.48 44.50 -24.98 137.92 -5.86 245.71 

50 -6.19 5.98 -12.25 47.43 -24.04 160.22 -3.97 289.15 

55 -4.98 6.53 -10.56 54.55 -24.76 189.00 -4.05 319.71 

60 -6.02 7.56 -10.87 57.76 -24.26 196.69 -2.96 350.45 

65 -5.49 8.12 -10.84 61.26 -23.38 213.36 -2.20 359.78 

70 -5.57 9.53 -10.56 65.50 -22.55 221.95 -1.35 390.51 

75 -5.38 10.24 -9.54 68.41 -22.52 229.37 -3.06 410.08 

80 -4.21 11.50 -9.62 75.31 -22.65 242.18 -2.00 421.46 
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5. Conclusion 

Previous project scheduling studies only minimized 

project completion time. However, in real business 

situations, unexpected interference exists and projects can 

be delayed. In this study, a novel parallel tabu search 

algorithm was applied to solve the RCPSP with 2 robust 

two recoverable resources. With different weights, a 

researcher can decide whether to minimize delay or 

minimize project completion time. Under unstable or risky 

conditions, minimizing delay is recommended. 

Test datasets are drawn from the PSPLIB. The four 

projects have 30, 60, 90, 120 activities; each is tested with 

30 different datasets. Two recoverable resources exist. Let 

3
w =0.1. The researcher tested weights—(

1
w , 

2
w )= (0.75, 

0.25), (
1

w , 
2

w )=(0.5, 0.5), and (
1

w , 
2

w )= (0.25, 

0.75)—with the number of simulated CPU of 1, 5, 10, …, 

80, totally 17 types of CPU number. The objective value 

improved as the number of CPUs increased. At 40 CPUs, 

the average solution converged while computation time 

continued increasing. With 50 CPUs, standard deviation 

was convergent in the robustness test. Therefore, for 

effectiveness and robustness, 50 CPUs is optimal for a 

robust parallel tabu search. 
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