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Abstract: This paper proposes a decision-tree-based linear multi-pipeline architecture on FPGA’s for packet sorting. We 

reflect on the next-generation packet classification problems where more than 5-tuple packet header fields has been classified. 

From traditional fixed 5-tuple matching, Multi-field packet classification has been evolved for flexible matching with arbitrary 

combination of numerous packet header fields. The recently proposed Open Flow switching requires classifying each packet 

using up to 12-tuple packet header fields. It become a great task to develop scalable solutions for next-generation packet 

classification that support larger rule sets, additional packet header fields and higher throughput. This paper proposes a 2-D 

multi-pipeline decision-tree-based architecture for next-generation packet classification which exploits the abundant 

parallelism and other desirable features such as current field-programmable gate arrays (FPGAs),. We propose several 

optimization techniques for the state-of-the-art decision-tree-based algorithm by examine the various traditional 5-tuple packet 

classification methods. By using set of 12-tuple rules, the framework has been developed to partition the rule set into multiple 

subsets each of which is built into an optimized decision tree. To maximize the memory utilization. a tree-to-pipeline mapping 

scheme is carefully designed while underneath high throughput. Our proposed architecture can store up to 1K synthetic 12-

tuple rules or 10K real-life 5-tuple rules in on-chip memory of a single up to date FPGA, and maintain 80 or 40 Gbps 

throughput for least packets of size (40 bytes) respectively. To utilize the memory properly and to sustaining high throughput, a 

mapping scheme based on tree-to-pipeline is designed carefully. This paper deal with the profuse parallelism and other 

preferred features provided by present field-programmable gate arrays and propose a 2-D multi-pipeline decision tree based 

architecture for next-generation packet sorting. The Verilog Hardware description languages (VHDL) are used to design the 

proposed architecture and synthesized using Xilinx Software. 
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1. Introduction 

The development of the next-generation internet demand 

routers to support a several value added services such as 

firewall processing ,network functionalities, quality of 

service (QoS) differentiation, traffic billing, virtual private 

networks, policy routing, and other value added services. To 

proffer these services, the router needs to organize the 

packets into diverse categories based on a set of rules which 

are predefined, which specify the value ranges of the several 

fields in the packet header. Such kind of function is called 

multi-field packet classification. In previous network 

applications, problems based on packet classification 

frequently consider the fixed 5-tuple fields: 32 -bit 

source/destination IP addresses, 8-bit trans-port layer 

protocol and 16-bit source/destination port numbers. In 

recent times network virtualization emerges as an needed 

features for next-generation enterprise, cloud computing 

networks and data center. This entails the underlying data 

plane be flexible and offer clean interface for control plane. 

Such efforts can be seen in Open Flow switch which handle 

explicitly the network laws by a rule set with rich definition 

as the hardware- software interface [2]. In Open Flow, up to 

12-tuple header fields are considered such as Open-Flow-like 
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packet classification and the next-generation packet 

classification problems. To design a high speed router, we 

need rule set size and multi -field packet classification. It has 

become one of the fundamental challenges. For example, the 

present link rate has been pushed above the OC-768 rate that 

is 40 Gbps, which requires meting out a packet every 8 ns in 

the most awful case (where the packets are of minimum size 

that is 40 bytes). Such high throughput is not possible using 

present software-based solutions [4]. Forth coming 

generation packet classification on more header fields poses 

an even higher challenge. Most of the present work in done 

by variety of hashing schemes such as Blooms filters and 

ternary content addressable memory .However, TCAMs are 

not scalable with respect to clock rate when compared to 

SRAMs, power consumption, or circuit area Most of TCAM-

based solutions also suffer from range expansion when 

converting ranges into prefixes .Hashing-based solutions like 

Bloom Filters have become popular due to their  time 

performance and high memory proficiency. It is to be noted 

that, hashing cannot provide deterministic performance due 

to potential collision and is incompetent in handling wildcard 

or prefix matching [13].In Blooms filter, the secondary 

module is always needed to resolve false positives inherent, 

which may be slow and can limit the overall performance 

[14]. As an alternative, our work focuses on optimizing and 

mapping state-of-the- art packet classification algorithms 

onto SRAM-based parallel architectures such as field-

programmable gate array (FPGA). FPGA technology has 

become an attractive option for implementing real-time 

network processing engines [7], [10], [15] due to its ability to 

reconfigure and to offer abundant parallelism. State- of-the-

art SRAM-based FPGA devices such as Xilinx Virtex -6 [16] 

and Altera Stratix-IV [17] provide high clock rate, low power 

dissipation and large amounts of on-chip dual- port memory 

with configurable word width. We make use of these 

desirable features in current FPGAs for scheming high-

performance next-generation packet classification engines. 

Table 1. Shows the Header field supported in current open flow. 

Header field Notation # of bits 

Ingress port  Variable 

Source Ethernet addresses Eth src 48 

Destination Ethernet address Eth dst 48 

Ethernet type Eth type 16 

VLAN ID  12 

VLAN Priority  3 

Source IP address SA 32 

Destination IP address DA 32 

IP Protocol Prtl 8 

IP Type of Service ToS 6 

Source port SP 16 

Destination port DP 16 

Ingrained node-to-stage mapping scheme is used for 

mapping the tree structure onto the pipeline architecture, 

which allows imposing the bounds on the memory size as 

well as the number of nodes in each stage. As a result, the 

memory consumption of the architecture is increased. Using 

external SRAM the memory allocation scheme is enabled to 

handle even larger rule sets. We make use of the dual-port 

high-speed Block RAMs provided in modern FPGAs to 

achieve a high throughput of two packets per clock cycle 

(PPC). Service interruption become possible due to memory-

based linear architecture. All the routing path are located to 

avoid large routing delay hence high clock frequency is 

obtained, 

2. Related Work 

Traditional 5-tuple packet classification is considered a 

drenched research area, few work has been done on FPGAs. 

Decomposition based packet classifications algorithms such 

as DCFL{22} and BV{19}are commonly used in most of the 

readily available FPGA. Lakshman et al. [19] propose the 

Parallel Bit Vector (BV) algorithm, which is a 

decomposition-based algorithm targeting hardware 

implementation. It performs the parallel lookups on each 

individual field first. The lookup on each field returns a bit 

vector with each bit representing a rule. Taylor et al. [22] 

introduce Distributed Cross producting of Field Labels 

(DCFL), which is also a decomposition-based algorithm 

leveraging several observations of the structure of real filter 

sets. They putrefy the multi-field searching problem and use 

independent search engines, which can function in parallel to 

find the alike conditions for each filter field. Jedhe et al. [15] 

realize the DCFL architecture in their entire firewall 

implementation on a Xilinx Virtex 2 Pro FPGA, using a 

memory intensive approach, as opposed to the logic intensive 

one, so that on-the-fly update is possible. Two recent works 

[24], [25] discuss several issues in implementing decision-

tree-based packet classification algorithms on FPGA, with 

different motivations. Luo et al. [24] propose a method called 

explicit range search to allow more cuts per node than the 

Hyper Cuts algorithm. Based on the cost of increased 

memory utilization, the tree height is radically reduced.At 

each internal node in order to find which child node to 

traverse it is needed to determine the a varying number of 

memory accesses, which may be infeasible for pipelining. 

Since the authors do not implement their FPGA design, the 

actual performance results are undecided. 

3. Proposed Architecture Design 

To achieve line-rate throughput, we map the decision 

forest including trees onto a parallel multi-pipeline 

architecture with P linear pipelines, as shown in Fig. 6, where 

P=2. Each pipeline is used for traversing a decision tree as 

well as matching the rule lists attached to the leaf nodes of 

that tree. The tree stages are the pipeline stages for tree 

traversal which is known as tree stages while those used for 

rule list matching are called the rule stages. Each tree stage 

contains a memory block storing the tree nodes and the 
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cutting logic which generates the memory access address 

based on the input packet header values. At the end of tree 

traversal, the index of the consequent leaf node is regain to 

access the rule stages. Since a leaf node contains a list of list 

Size rules, we need list Size rule stages for matching these 

rules. All the leaf nodes of a tree have their rule lists mapped 

onto these list Size rule stages. Each rule stage includes a 

memory block storing the full content of rules and the 

matching logic which performs parallel matching on all 

header fields .Each incoming packet goes through all the 

pipelines in parallel. A different subset of header fields of the 

packet may be used to traverse the trees in different pipelines. 

Each pipeline outputs the rule ID or its corresponding action. 

The priority resolver picks the result with the highest priority 

among the outputs from the pipelines. 

Table 2. Formation of Rules. 

Header Filed Bits Allocated Rule Type 

Source Address 32 Rule1 

Destination Address 32 Rule2 

Source Port Number 16 Rule3 

Destination Port Number 16 Rule4 

Transport layer protocol 3 Rule5 

Ethernet Type 16 Rule6 

VLAN ID 12 Rule7 

VLAN Priority 3 Rule8 

3.1. Pipeline 

Like the HyperCuts with the push common rule upwards 

heuristic enabled, our algorithm may reduce the memory 

consumption at the cost of increased search time, if the 

process to match the rules in the internal rule list of each tree 

node is placed in the same critical path of decision tree 

traversal. Any packet traversing the decision tree must 

perform: 1) matching the rules in the internal rule list of the 

existing node and 2) branching to the child nodes, in series. 

The number of memory accesses all along the grave path can 

be very large in the worst cases. Though the throughput can 

be improved by using a deep pipeline, the large delay 

transitory the packet classification engine need the router to 

use a large buffer to store the payload of all packets being 

classified. Moreover, since the search in the rule list and the 

traversal in the decision tree have different structures, a 

heterogeneous pipeline is needed, which complicates the 

hardware design. 

3.2. Tree-to-Pipeline Mapping 

Before the FPGA implementation, the size of the memory 

in the pipeline stages should be known. However, when 

simply mapping each level of the decision tree onto a 

separate stage, the memory distribution across stages can 

vary extensively. Allocating memory with the maximum size 

for each stage results in large memory wastage. This propose 

a Ring pipeline architecture which employs TCAMs to 

achieve balanced memory distribution at the cost of halving 

the throughput to one packet per two clock cycles, i.e., 0.5 

PPC, due to its non-linear structure. Our task is to map the 

decision tree onto a pipeline (i.e., Tree Pipeline in our 

architecture) to achieve balanced memory distribution over 

stages, while sustaining a throughput of one packet per clock 

cycle (which can be further improved to 2 PPC by employing 

dual-port RAMs). The memory distribution across stages 

should be balanced not only for the Tree Pipeline, but also for 

all the Rule Pipelines. Note that the number of words in each 

stage of a Rule Pipelines depends on the number of tree 

nodes rather than the number of words in the corresponding 

stage of Tree Pipeline, as shown in Fig. 8. The challenge 

comes from the various number of words needed for tree 

nodes. As a result, the tree-to-pipeline mapping scheme 

requires not only balanced memory distribution, but also 

balanced node distribution across stages. Moreover, to 

maximize the memory utilization in each stage, the sum of 

the number of words of all nodes in a stage should approach 

some power of 2. Otherwise, for example, we need to 

allocate 2048 words for a stage consuming only 1025 words. 

The above problem is a variant of bin packing problems, and 

can be proved to be NP-complete. We use a heuristic similar 

to our previous study of trie-based IP lookup, which allows 

the nodes on the same level of the tree to be mapped onto 

different stages. This provides more flexibility to map the 

tree nodes, and helps achieve a balanced memory and node 

distribution across the stages in a pipeline, as shown in Fig. 3. 

Only one constraint must be followed. 

Constraint 1: If node is an ancestor of node in the tree, 

then must be mapped to a stage preceding the stage to which 

is mapped. 

We impose two bounds, namely and for the memory and 

node distribution, respectively. The values of the bounds are 

some power of 2. The criteria to set the bounds is to 

minimize the number of pipeline stages while achieving 

balanced distribution over stages. The complete tree-to-

pipeline mapping algorithm, where denotes a tree node, the 

number of stages, the set of remaining nodes to be mapped 

onto stages, the number of words of the the stage, and the 

number of nodes mapped onto the Nth stage. We manage two 

lists, Ready List and Next Ready List. The former stores the 

nodes that are available for filling the current stage, while the 

latter stores the nodes for filling the next stage. We start with 

mapping the nodes that are children of the root onto Stage 

1.When filling a stage, the nodes in Ready List are popped 

out and mapped onto the stage, in the decreasing order of 

their heights.2 After a node is assigned to a stage, its children 

are pushed into Next Ready List. When a stage is full or 

Ready List becomes empty, we move on to the next stage. At 

that time, Next Ready List is merged into Ready List. By 

these means, Constraint 1 is met. The complexity of this 

mapping algorithm is , where denotes the total number of tree 

nodes. Our tree-to-pipeline mapping algorithm allows two 

nodes on the same tree level to be mapped to different stages. 

We implement this feature by using a simple method. Each 

node stored in the local memory of a pipeline stage has one 
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extra field: the distance to the pipeline stage where the child 

node is stored. When a packet is passed through the pipeline, 

the distance value is decremented by 1 when it goes through 

a stage. When the distance value becomes 0, the child node’s 

address is used to access the memory in that stage. External 

SRAMs are usually needed to handle very large rule sets, 

while the number of external SRAMs is constrained by the 

number of I/O pins in our architecture. By assigning large 

values of and for one or two specific stages, our mapping 

algorithm can be extended to allocate a large number of tree 

nodes onto few external SRAMs which consume controllable 

number of I/O pins. 

 

Figure 1. 2-D Multi-Pipeline Architecture. 

 

3.3. Pipeline for Rule Lists 

When a packet accesses the memory in a Tree Pipeline 

stage, it will obtain the pointer to the rule list associated with 

the current tree node being accessed. The packet uses this 

pointer to access all stages of the Rule Pipeline attached to 

the current Tree Pipeline stage. Each rule is stored as one 

word in a Rule Pipeline stage, benefiting from the largeword 

width provided by FPGA. Within a stage of the Rule Pipeline, 

the packet uses the pointer to retrieve one rule and compare 

its header fields to find a match. When a match is found in 

the current Rule Pipeline stage, the packet will carry the 

corresponding action information with the rule priority along 

the Rule Pipeline until it finds another match where the 

matching rule has higher priority than the one the packet is 

carrying. 

 

Figure 2. Decision Tree. 

4. Simulation Results 

Table 3. Shows the Device Utilization Summary. 

Device Utilization Summary 

Logic Utilization Used Available Utilization Note(s) 

Number of Slice Flip Flops 682 9,312 7%  

Number of 4 input LUTs 1,987 9,312 21%  

Logic Distribution     

Number of occupied Slices 1,034 4,656 22%  

Number of Slices containing only related logic 1,034 1,034 100%  

Number of Slices containing unrelated logics 0 1,034 0%  

Total Number of 4 input LUTs 2,008 9,312 21%  

Number used as logic 1,987    

Number used as a route-thru 21    

Number of bonded IOBs 18 232 7%  

IOB Flip Flops 8    

Number of GCLKs 1 24 4%  

Total equivalent gate count for design 22,689    

Additional JTAG gate count for IOBs 864    
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Figure 3. RTL View of Proposed Architecture. 

 

Figure 4. Technology Schematic View. 
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