

International Journal of Wireless Communications and Mobile Computing
2015; 3(3): 27-32

Published online May 8, 2015 (http://www.sciencepublishinggroup.com/j/wcmc)

doi: 10.11648/j.wcmc.20150303.11

ISSN: 2330-1007 (Print); ISSN: 2330-1015 (Online)

FPGA Based Packet Classification Using Multi-Pipeline
Architecture

R. Sathesh Raaj, J. Kumarnath

Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, India

Email address:
Sathesh2311psna@gmail.com (R. S. Raaj), jkumarnath@gmail.com (J. Kumarnath)

To cite this article:
R. Sathesh Raaj, J. Kumarnath. FPGA Based Packet Classification Using Multi-Pipeline Architecture. International Journal of Wireless

Communications and Mobile Computing. Vol. 3, No. 3, 2015, pp. 27-32. doi: 10.11648/j.wcmc.20150303.11

Abstract: This paper proposes a decision-tree-based linear multi-pipeline architecture on FPGA’s for packet sorting. We

reflect on the next-generation packet classification problems where more than 5-tuple packet header fields has been classified.

From traditional fixed 5-tuple matching, Multi-field packet classification has been evolved for flexible matching with arbitrary

combination of numerous packet header fields. The recently proposed Open Flow switching requires classifying each packet

using up to 12-tuple packet header fields. It become a great task to develop scalable solutions for next-generation packet

classification that support larger rule sets, additional packet header fields and higher throughput. This paper proposes a 2-D

multi-pipeline decision-tree-based architecture for next-generation packet classification which exploits the abundant

parallelism and other desirable features such as current field-programmable gate arrays (FPGAs),. We propose several

optimization techniques for the state-of-the-art decision-tree-based algorithm by examine the various traditional 5-tuple packet

classification methods. By using set of 12-tuple rules, the framework has been developed to partition the rule set into multiple

subsets each of which is built into an optimized decision tree. To maximize the memory utilization. a tree-to-pipeline mapping

scheme is carefully designed while underneath high throughput. Our proposed architecture can store up to 1K synthetic 12-

tuple rules or 10K real-life 5-tuple rules in on-chip memory of a single up to date FPGA, and maintain 80 or 40 Gbps

throughput for least packets of size (40 bytes) respectively. To utilize the memory properly and to sustaining high throughput, a

mapping scheme based on tree-to-pipeline is designed carefully. This paper deal with the profuse parallelism and other

preferred features provided by present field-programmable gate arrays and propose a 2-D multi-pipeline decision tree based

architecture for next-generation packet sorting. The Verilog Hardware description languages (VHDL) are used to design the

proposed architecture and synthesized using Xilinx Software.

Keywords: Field Programmable Gate Array (FPGA), Multi-Pipeline Architecture, Multi-Field Packet Classification,

Open Flow Switching, 2-D Multi-Pipeline Decision-Tree-Based Architecture, 12-Tuple Rules, 5-Tuple Rules,

Verilog Hardware Description Languages (VHDL)

1. Introduction

The development of the next-generation internet demand

routers to support a several value added services such as

firewall processing ,network functionalities, quality of

service (QoS) differentiation, traffic billing, virtual private

networks, policy routing, and other value added services. To

proffer these services, the router needs to organize the

packets into diverse categories based on a set of rules which

are predefined, which specify the value ranges of the several

fields in the packet header. Such kind of function is called

multi-field packet classification. In previous network

applications, problems based on packet classification

frequently consider the fixed 5-tuple fields: 32 -bit

source/destination IP addresses, 8-bit trans-port layer

protocol and 16-bit source/destination port numbers. In

recent times network virtualization emerges as an needed

features for next-generation enterprise, cloud computing

networks and data center. This entails the underlying data

plane be flexible and offer clean interface for control plane.

Such efforts can be seen in Open Flow switch which handle

explicitly the network laws by a rule set with rich definition

as the hardware- software interface [2]. In Open Flow, up to

12-tuple header fields are considered such as Open-Flow-like

28 R. Sathesh Raaj and J. Kumarnath: FPGA Based Packet Classification Using Multi-Pipeline Architecture

packet classification and the next-generation packet

classification problems. To design a high speed router, we

need rule set size and multi -field packet classification. It has

become one of the fundamental challenges. For example, the

present link rate has been pushed above the OC-768 rate that

is 40 Gbps, which requires meting out a packet every 8 ns in

the most awful case (where the packets are of minimum size

that is 40 bytes). Such high throughput is not possible using

present software-based solutions [4]. Forth coming

generation packet classification on more header fields poses

an even higher challenge. Most of the present work in done

by variety of hashing schemes such as Blooms filters and

ternary content addressable memory .However, TCAMs are

not scalable with respect to clock rate when compared to

SRAMs, power consumption, or circuit area Most of TCAM-

based solutions also suffer from range expansion when

converting ranges into prefixes .Hashing-based solutions like

Bloom Filters have become popular due to their time

performance and high memory proficiency. It is to be noted

that, hashing cannot provide deterministic performance due

to potential collision and is incompetent in handling wildcard

or prefix matching [13].In Blooms filter, the secondary

module is always needed to resolve false positives inherent,

which may be slow and can limit the overall performance

[14]. As an alternative, our work focuses on optimizing and

mapping state-of-the- art packet classification algorithms

onto SRAM-based parallel architectures such as field-

programmable gate array (FPGA). FPGA technology has

become an attractive option for implementing real-time

network processing engines [7], [10], [15] due to its ability to

reconfigure and to offer abundant parallelism. State- of-the-

art SRAM-based FPGA devices such as Xilinx Virtex -6 [16]

and Altera Stratix-IV [17] provide high clock rate, low power

dissipation and large amounts of on-chip dual- port memory

with configurable word width. We make use of these

desirable features in current FPGAs for scheming high-

performance next-generation packet classification engines.

Table 1. Shows the Header field supported in current open flow.

Header field Notation # of bits

Ingress port Variable

Source Ethernet addresses Eth src 48

Destination Ethernet address Eth dst 48

Ethernet type Eth type 16

VLAN ID 12

VLAN Priority 3

Source IP address SA 32

Destination IP address DA 32

IP Protocol Prtl 8

IP Type of Service ToS 6

Source port SP 16

Destination port DP 16

Ingrained node-to-stage mapping scheme is used for

mapping the tree structure onto the pipeline architecture,

which allows imposing the bounds on the memory size as

well as the number of nodes in each stage. As a result, the

memory consumption of the architecture is increased. Using

external SRAM the memory allocation scheme is enabled to

handle even larger rule sets. We make use of the dual-port

high-speed Block RAMs provided in modern FPGAs to

achieve a high throughput of two packets per clock cycle

(PPC). Service interruption become possible due to memory-

based linear architecture. All the routing path are located to

avoid large routing delay hence high clock frequency is

obtained,

2. Related Work

Traditional 5-tuple packet classification is considered a

drenched research area, few work has been done on FPGAs.

Decomposition based packet classifications algorithms such

as DCFL{22} and BV{19}are commonly used in most of the

readily available FPGA. Lakshman et al. [19] propose the

Parallel Bit Vector (BV) algorithm, which is a

decomposition-based algorithm targeting hardware

implementation. It performs the parallel lookups on each

individual field first. The lookup on each field returns a bit

vector with each bit representing a rule. Taylor et al. [22]

introduce Distributed Cross producting of Field Labels

(DCFL), which is also a decomposition-based algorithm

leveraging several observations of the structure of real filter

sets. They putrefy the multi-field searching problem and use

independent search engines, which can function in parallel to

find the alike conditions for each filter field. Jedhe et al. [15]

realize the DCFL architecture in their entire firewall

implementation on a Xilinx Virtex 2 Pro FPGA, using a

memory intensive approach, as opposed to the logic intensive

one, so that on-the-fly update is possible. Two recent works

[24], [25] discuss several issues in implementing decision-

tree-based packet classification algorithms on FPGA, with

different motivations. Luo et al. [24] propose a method called

explicit range search to allow more cuts per node than the

Hyper Cuts algorithm. Based on the cost of increased

memory utilization, the tree height is radically reduced.At

each internal node in order to find which child node to

traverse it is needed to determine the a varying number of

memory accesses, which may be infeasible for pipelining.

Since the authors do not implement their FPGA design, the

actual performance results are undecided.

3. Proposed Architecture Design

To achieve line-rate throughput, we map the decision

forest including trees onto a parallel multi-pipeline

architecture with P linear pipelines, as shown in Fig. 6, where

P=2. Each pipeline is used for traversing a decision tree as

well as matching the rule lists attached to the leaf nodes of

that tree. The tree stages are the pipeline stages for tree

traversal which is known as tree stages while those used for

rule list matching are called the rule stages. Each tree stage

contains a memory block storing the tree nodes and the

 International Journal of Wireless Communications and Mobile Computing 2015; 3(3): 37-32 29

cutting logic which generates the memory access address

based on the input packet header values. At the end of tree

traversal, the index of the consequent leaf node is regain to

access the rule stages. Since a leaf node contains a list of list

Size rules, we need list Size rule stages for matching these

rules. All the leaf nodes of a tree have their rule lists mapped

onto these list Size rule stages. Each rule stage includes a

memory block storing the full content of rules and the

matching logic which performs parallel matching on all

header fields .Each incoming packet goes through all the

pipelines in parallel. A different subset of header fields of the

packet may be used to traverse the trees in different pipelines.

Each pipeline outputs the rule ID or its corresponding action.

The priority resolver picks the result with the highest priority

among the outputs from the pipelines.

Table 2. Formation of Rules.

Header Filed Bits Allocated Rule Type

Source Address 32 Rule1

Destination Address 32 Rule2

Source Port Number 16 Rule3

Destination Port Number 16 Rule4

Transport layer protocol 3 Rule5

Ethernet Type 16 Rule6

VLAN ID 12 Rule7

VLAN Priority 3 Rule8

3.1. Pipeline

Like the HyperCuts with the push common rule upwards

heuristic enabled, our algorithm may reduce the memory

consumption at the cost of increased search time, if the

process to match the rules in the internal rule list of each tree

node is placed in the same critical path of decision tree

traversal. Any packet traversing the decision tree must

perform: 1) matching the rules in the internal rule list of the

existing node and 2) branching to the child nodes, in series.

The number of memory accesses all along the grave path can

be very large in the worst cases. Though the throughput can

be improved by using a deep pipeline, the large delay

transitory the packet classification engine need the router to

use a large buffer to store the payload of all packets being

classified. Moreover, since the search in the rule list and the

traversal in the decision tree have different structures, a

heterogeneous pipeline is needed, which complicates the

hardware design.

3.2. Tree-to-Pipeline Mapping

Before the FPGA implementation, the size of the memory

in the pipeline stages should be known. However, when

simply mapping each level of the decision tree onto a

separate stage, the memory distribution across stages can

vary extensively. Allocating memory with the maximum size

for each stage results in large memory wastage. This propose

a Ring pipeline architecture which employs TCAMs to

achieve balanced memory distribution at the cost of halving

the throughput to one packet per two clock cycles, i.e., 0.5

PPC, due to its non-linear structure. Our task is to map the

decision tree onto a pipeline (i.e., Tree Pipeline in our

architecture) to achieve balanced memory distribution over

stages, while sustaining a throughput of one packet per clock

cycle (which can be further improved to 2 PPC by employing

dual-port RAMs). The memory distribution across stages

should be balanced not only for the Tree Pipeline, but also for

all the Rule Pipelines. Note that the number of words in each

stage of a Rule Pipelines depends on the number of tree

nodes rather than the number of words in the corresponding

stage of Tree Pipeline, as shown in Fig. 8. The challenge

comes from the various number of words needed for tree

nodes. As a result, the tree-to-pipeline mapping scheme

requires not only balanced memory distribution, but also

balanced node distribution across stages. Moreover, to

maximize the memory utilization in each stage, the sum of

the number of words of all nodes in a stage should approach

some power of 2. Otherwise, for example, we need to

allocate 2048 words for a stage consuming only 1025 words.

The above problem is a variant of bin packing problems, and

can be proved to be NP-complete. We use a heuristic similar

to our previous study of trie-based IP lookup, which allows

the nodes on the same level of the tree to be mapped onto

different stages. This provides more flexibility to map the

tree nodes, and helps achieve a balanced memory and node

distribution across the stages in a pipeline, as shown in Fig. 3.

Only one constraint must be followed.

Constraint 1: If node is an ancestor of node in the tree,

then must be mapped to a stage preceding the stage to which

is mapped.

We impose two bounds, namely and for the memory and

node distribution, respectively. The values of the bounds are

some power of 2. The criteria to set the bounds is to

minimize the number of pipeline stages while achieving

balanced distribution over stages. The complete tree-to-

pipeline mapping algorithm, where denotes a tree node, the

number of stages, the set of remaining nodes to be mapped

onto stages, the number of words of the the stage, and the

number of nodes mapped onto the Nth stage. We manage two

lists, Ready List and Next Ready List. The former stores the

nodes that are available for filling the current stage, while the

latter stores the nodes for filling the next stage. We start with

mapping the nodes that are children of the root onto Stage

1.When filling a stage, the nodes in Ready List are popped

out and mapped onto the stage, in the decreasing order of

their heights.2 After a node is assigned to a stage, its children

are pushed into Next Ready List. When a stage is full or

Ready List becomes empty, we move on to the next stage. At

that time, Next Ready List is merged into Ready List. By

these means, Constraint 1 is met. The complexity of this

mapping algorithm is , where denotes the total number of tree

nodes. Our tree-to-pipeline mapping algorithm allows two

nodes on the same tree level to be mapped to different stages.

We implement this feature by using a simple method. Each

node stored in the local memory of a pipeline stage has one

30 R. Sathesh Raaj and J. Kumarnath: FPGA Based Packet Classification Using Multi-Pipeline Architecture

extra field: the distance to the pipeline stage where the child

node is stored. When a packet is passed through the pipeline,

the distance value is decremented by 1 when it goes through

a stage. When the distance value becomes 0, the child node’s

address is used to access the memory in that stage. External

SRAMs are usually needed to handle very large rule sets,

while the number of external SRAMs is constrained by the

number of I/O pins in our architecture. By assigning large

values of and for one or two specific stages, our mapping

algorithm can be extended to allocate a large number of tree

nodes onto few external SRAMs which consume controllable

number of I/O pins.

Figure 1. 2-D Multi-Pipeline Architecture.

3.3. Pipeline for Rule Lists

When a packet accesses the memory in a Tree Pipeline

stage, it will obtain the pointer to the rule list associated with

the current tree node being accessed. The packet uses this

pointer to access all stages of the Rule Pipeline attached to

the current Tree Pipeline stage. Each rule is stored as one

word in a Rule Pipeline stage, benefiting from the largeword

width provided by FPGA. Within a stage of the Rule Pipeline,

the packet uses the pointer to retrieve one rule and compare

its header fields to find a match. When a match is found in

the current Rule Pipeline stage, the packet will carry the

corresponding action information with the rule priority along

the Rule Pipeline until it finds another match where the

matching rule has higher priority than the one the packet is

carrying.

Figure 2. Decision Tree.

4. Simulation Results

Table 3. Shows the Device Utilization Summary.

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 682 9,312 7%

Number of 4 input LUTs 1,987 9,312 21%

Logic Distribution

Number of occupied Slices 1,034 4,656 22%

Number of Slices containing only related logic 1,034 1,034 100%

Number of Slices containing unrelated logics 0 1,034 0%

Total Number of 4 input LUTs 2,008 9,312 21%

Number used as logic 1,987

Number used as a route-thru 21

Number of bonded IOBs 18 232 7%

IOB Flip Flops 8

Number of GCLKs 1 24 4%

Total equivalent gate count for design 22,689

Additional JTAG gate count for IOBs 864

 International Journal of Wireless Communications and Mobile Computing 2015; 3(3): 37-32 31

Figure 3. RTL View of Proposed Architecture.

Figure 4. Technology Schematic View.

References

[1] M. Casado, T. Koponen, D. Moon, and S. Shenker,
“Rethinking packet forwarding hardware,” in Proc. Hot
Nets—VII, 2008, pp. 1–6.

[2] N. Mc Keown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “Open Flow:
Enabling innovation in campus networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[3] Open Flow Foundation, “Open Flow Switch Specification,
Version 1.0.0,” 2009. [Online]. Available:
http://www.openflowswitch.org/documents/openflow-spec-
v1.0.0.pdf

[4] P. Gupta and N. Mc Keown, “Algorithms for packet
classification,” IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.

[5] F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient multimatch
packet classification and lookup with TCAM,” IEEE Micro,
vol. 25, no. 1, pp. 50–59, Jan. 2005.

[6] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for advanced packet classification with ternary
CAMs,” in Proc. SIGCOMM, 2005, pp. 193–204.

[7] H. Song and J. W. Lockwood, “Efficient packet classification
for network intrusion detection using FPGA,” in Proc. FPGA,
2005, pp. 238–245.

[8] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood,
“Fast packet classification using bloom filters,” in Proc. ANCS,
2006, pp. 61–70.

[9] I. Papaefstathiou and V. Papaefstathiou, “Memory-efficient 5D
packet classification at 40 Gbps,” in Proc. INFOCOM, 2007,
pp. 1370–1378.

[10] A. Nikitakis and I. Papaefstathiou, “A memory-efficient
FPGA-based classification engine,” in Proc. FCCM, 2008, pp.
53–62.

[11] W. Jiang and V. K. Prasanna, “Sequence-preserving parallel IP
lookup using multiple SRAM-based pipelines,” J. Parallel
Distrib. Comput., vol. 69, no. 9, pp. 778–789, 2009.

[12] H. Yu and R. Mahapatra, “A power- and throughput-efficient
packet classifier with n bloom filters,” IEEE Trans. Comput.,
vol. 60, no. 8, pp. 1182–1193, Aug. 2011.

[13] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet
classification on FPGAs,” in Proc. FPGA, 2009, pp. 219–228.

[14] I. Sourdis, “Designs & algorithms for packet and content
inspection” Ph.D. dissertation, Comput. Eng. Div., Delft Univ.
Technol., Delft, The Netherlands, 2007. [Online]. Available:
http://ce.et.tudelft.nl/publicationfiles/ 1464_564 sourdis
phdthesis.pdf

[15] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable
high throughput firewall in FPGA,” in Proc. FCCM, 2008, pp.
43–52.

[16] Xilinx, Inc., San Jose, CA, “Xilinx Virtex-6 FPGA
family,”2009.[Online].Available:www.xilinx.com/products/vir
tex6/

[17] Altera Corp., San Jose, CA, “Altera Stratix IV FPGA,”
2009.[Online].Available:http://www.altera.com/products/devic
es/stratix-fpgas/ stratix-iv/

[18] D. E. Taylor, “Survey and taxonomy of packet classification
techniques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275,
2005.

[19] T. V. Lakshman and D. Stiliadis, “High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching,” in Proc. SIGCOMM, 1998, pp. 203–214.

[20] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
classification using multidimensional cutting,” in Proc.
SIGCOMM, 2003, pp. 213–224.

[21] P. Gupta and N. McKeown, “Classifying packets with
hierarchical intelligent cuttings,” IEEE Micro, vol. 20, no. 1,
pp. 34–41, 2000.

[22] D. E. Taylor and J. S. Turner, “Scalable packet classification
using distributed crossproducing of field labels,” in Proc.
INFOCOM, 2005, pp. 269–280.

[23] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap:
Hardware/ software IP lookups with incremental updates,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122,
2004.

[24] Y. Luo, K. Xiang, and S. Li, “Acceleration of decision tree
searching for IP traffic classification,” in Proc. ANCS, 2008,
pp. 40–49.

32 R. Sathesh Raaj and J. Kumarnath: FPGA Based Packet Classification Using Multi-Pipeline Architecture

[25] A. Kennedy, X.Wang, Z. Liu, and B. Liu, “Low power
architecture for high speed packet classification,” in Proc.
ANCS, 2008, pp. 131–140.

[26] Y. Luo, P. Cascon, E. Murray, and J. Ortega, “Accelerating
Open Flow switching with network processors,” in Proc.
ANCS, 2009, pp. 70–71.

[27] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N.
Mc Keown, “Implementing an Open Flow switch on the Net
FPGA platform,” in Proc. ANCS, 2008, pp

