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Abstract: Assuming a linear equation of state and charged anisotropic matter, in this paper we obtain two new classes of 
exact solutions of the Einstein-Maxwell system with a particular form of the metric potential Z deduced for Malaver (2016). A 
physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The obtained models not 
admit singularities in the charge density and the matter at the centre. 
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1. Introduction 

From the development of Einstein´s theory of general 
relativity, the modeling of superdense matter configurations 
is an interesting research area [1, 2]. Some solutions found 
fundamental applications in astrophysics, cosmology and 
more recently in the developments inspired by string theory 
[2]. Different mathematical formulations that allow to solve 
Einstein´s field equations have been used to describe the 
behavior of objects submitted to strong gravitational fields 
known as neutron stars, quasars and white dwarfs [3, 4, 5]. 

In the construction of the first theoretical models of 
relativistic stars are important the works of Schwarzschild 
[6], Tolman [7], Oppenheimer and Volkoff [8]. 
Schwarzschild [6] found analytical solutions that allowed 
describing a star with uniform density, Tolman [7] developed 
a method to find solutions of static spheres of fluid and 
Oppenheimer and Volkoff [8] used Tolman's solutions to 
study the gravitational balance of neutron stars. It is 
important to mention Chandrasekhar's contributions [9] in the 
model production of white dwarfs in presence of relativistic 
effects and the works of Baade and Zwicky [10] who propose 
the concept of neutron stars and identify a astronomic dense 
objects known as supernovas. 

The physics of ultrahigh densities is not well understood 
and many of the strange stars studies have been performed 
within the framework of the MIT bag model [11]. In this 
model, the strange matter equation of state has a simple 

linear form given by ( )1
4

3
p Bρ= −  where ρ is the energy 

density, p is the isotropic pressure and B is the bag constant. 
In theoretical works of realistic stellar models, is important 

include the pressure anisotropy [12-14]. Bowers and Liang 
[12] extensively discuss the effect of pressure anisotropy in 
general relativity. The existence of anisotropy within a star 
can be explained by the presence of a solid core, phase 
transitions, a type III super fluid, a pion condensation [15] or 
for the presence of an electrical field [16]. The physics of 
ultrahigh densities is not well understood and many of the 
strange stars studies have been performed within the 
framework of the MIT-Bag model [11]. In this model, the 
strange matter equation of state has a simple linear form 

given by ( )1
4

3
p Bρ= −  where ρ  is the energy density, p is 

the isotropic pressure and B is the bag constant. Many 
researchers have used a great variety of mathematical 
techniques to try to obtain exact solutions for quark stars 
within the framework of MIT-Bag model: Komathiraj and 
Maharaj [11] found two new classes of exact solutions to the 
Einstein-Maxwell system of equations with a particular form 
of the gravitational potential and isotropic pressure. Malaver 
[17, 18] also has obtained some models for quark stars 
considering a potential gravitational that depends on an 
adjustable parameter. Thirukkanesh and Maharaj [19] studied 
the behavior of compact relativistic objects with anisotropic 
pressure in the presence of the electromagnetic field. Maharaj 
et al. [20] generated new models for quark stars with charged 
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anisotropic matter considering a linear equation of state. 
Thirukkanesh and Ragel [21] obtained new models for 
compact stars with quark matter. Sunzu et al. found new 
classes of solutions with specific forms for the measure of 
anisotropy [22]. 

With the use of Einstein´ field equations, important progress 
have been made to model the interior of a star. Feroze and 
Siddiqui [23, 24] and Malaver [25, 26] consider a quadratic 
equation of state for the matter distribution and specify 
particular forms for the gravitational potential and electric field 
intensity. Mafa Takisa and Maharaj [27] obtained new exact 
solutions to the Einstein-Maxwell system of equations with a 
polytropic equation of state. Thirukkanesh and Ragel [28] have 
obtained particular models of anisotropic fluids with polytropic 
equation of state which are consistent with the reported 
experimental observations. More recently, Malaver [29, 30] 
generated new exact solutions to the Einstein-Maxwell system 
considering Van der Waals modified equation of state with and 
without polytropical exponent. Raghoonundun and Hobill [31] 
found new analytical models for compact stars with the use of 
Tolman VII solution. 

The main objective in this paper is to generate a new class 
for charged anisotropic matter with the barotropic equation of 
state that presents a linear relation between the energy 
density and the radial pressure in static spherically symmetric 
spacetime using a particular form for the metric potential 

( )Z x  deduced for Malaver [32] and two specific forms for 

the electrical field intensity. In this work has been obtained 
new classes of static spherically symmetrical models of 
charged matter without singularities in the charge distribution 
and the matter at the centre of the star. This article is 
organized as follows: Section 2 presents Einstein´s field 

equations. In Section 3, a gravitational potential ( )Z x  was 

chosen in order to solve the field equations and obtain new 
models for charged anisotropic matter. In Section 4, a 
physical analysis of the new solutions is performed. Finally 
in Section 5, we conclude. 

2. Einstein Field Equations of 

Anisotropic Fluid 

We consider a spherically symmetric, static and 
homogeneous and anisotropic spacetime in Schwarzschild 
coordinates given by 

2 2λ 2 2 2 2sin2 (r) 2 (r) 2ds = e dt +e dr + r (dθ + θdφ )ν−       (1) 

where ( )rν  and ( )rλ  are two arbitrary functions. 

The Einstein field equations for the charged anisotropic 
matter are given by 

( )2λ 2λ
2

1 2
1

'λ
e + e = ρ

rr

− −−                      (2) 

( )2λ 2λ
2

1 2
1

'

r

ν
e + e = p

rr

− −− −                     (3) 

2 2
te p

r r

λ ν λν ν ν λ− ′ ′ ′′ ′ ′ ′+ + − − = 
 

                   (4) 

2
2

1
( )e r E

r

λσ − ′=                                    (5) 

where ρ  is the energy density, rp  is the radial pressure, E  

is electric field intensity, 

tp is the tangential pressureand primes denote 

differentiations with respect to r. Using the transformations,
2x = cr , 2λ(r)Z(x)= e−  and 2 2 2ν(r)A y (x)= e  with arbitrary 

constants A and c>0, suggested by Durgapal and Bannerji 
[33], the metric (1) take the form 

2 2 2 2 21
( ) sin

4
2 2 2 x

ds = A y x dt + dx + (dθ + θdφ )
cxz c

−    (6) 

and the Einstein field equations can be written as 

21
2Z

2

Z ρ E
=

x c c

− − +ɺ                               (7) 

21
4Z

2
rpy Z E

=
y x c c

−− −
ɺ

                            (8) 

2

4 4Z 2xZ
2

tpy y E
xZ +( + ) + Z =

y y c c
+

ɺɺ ɺ
ɺ ɺ                (9) 

t rp p= + ∆                                  (10) 

21
4 1 2

y y Z E
xZ Z x

c y y x c

 ∆ −= + + + − 
 

ɺɺ ɺ
ɺ              (11) 

( )22 4cZ
xE E

x
σ = +ɺ                            (12) 

σ  is the charge density, t rp p∆ = −  is the anisotropic 

factor and dots denote differentiation with respect to x. With 
the transformations of [33], the mass within a radius r of the 
sphere take the form 

3/2
0

1

4c

x

M(x)= x ρ(x)dx∫                      (13) 

In this paper, it has been assumed the following lineal 
equation of state within the framework of MIT-Bag model 

1

3
rp = ρ                                   (14) 

3. The New Physical Models 

Following Malaver [32], we take the form of the 

gravitational potential ( )Z x  given by 
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( )
( )

6

6

1
( )

1

ax
Z x

ax

−
=

+
                          (15) 

where a is a real constant. This potential is regular at the 
origin and well behaved in the interior of the sphere. Two 
particular forms for the electrical field have been considered. 

3.1. Model I 

In this model the form of the electrical field is proposed for Bibi et al. [34] 

( )
( )

2
3

5

1

Kax ax
E

ax

+
=

+
                                                                              (16) 

Using ( )Z x  and eq. (16) in eq. (7) it is obtained 

( ) ( ) ( ) ( ) ( )
( )

6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

7

24 9 264 26 400 34 560 21 216 5 72

2 1

Ka x a c Ka x a c Ka x a c Ka x a c Ka x a c Ka x ac

ax
ρ

 − − + + − − + + − + + +
 =

+
  (17) 

Substituting (17) in eq. (14), the radial pressure can be written in the form 

( ) ( ) ( ) ( ) ( )
( )

6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

7

24 9 264 26 400 34 560 21 216 5 72

6 1
r

Ka x a c Ka x a c Ka x a c Ka x a c Ka x a c Ka x ac
P

ax

 − − + + − − + + − + + +
 =

+
  (18) 

Using (17) in (13), the expression of the mass function is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1/2

1/2 6 5 4 3 2 2

32 96 120 80 30 6
( )

4 1 2 11 1 1 1 1 4 1

x K K K
M x

ac ax ac axc ax ax ax ax ax ac ax

 
 = − − + − + − + − +

+ + + + + + + + 

  (19) 

With (16) and ( )Z x  in (12), the charge density is 

( ) ( )
( ) ( )

26 2 2

2
11

1 4 15

1 5

Kca ax a x ax

ax ax
σ

− + +
=

+ +
                                                                (20) 

Substituting (16) and (18) in (8) 

( ) ( ) ( ) ( ) ( )
( )

( )
( )( )

( )

6 6 6 5 5 5 4 4 4 3 3 3 2 2 2

7

33 2 5 4

6 6

24 9 264 26 400 34 560 21 216 5 72

2 1

5 112 40 12

4 1 8 1

Ka x a c Ka x a c Ka x a c Ka x a c Ka x a c Ka x ac
y

y ax

Kax ax axa a x a x

ax c ax

 − − + + − − + + − + + +
 =

+

+ ++ ++ −
− +

ɺ

  (21) 

Integrating (21), it is obtained for ( )y x  

( )( ) [ ]1( ) 1 1 exp ( )
A

y x c ax ax B x= + −                                                                  (22) 

where 

6

6

K ac
A

ac

+= −  and 

( ) ( ) ( ) ( )
( )

5 4 4 3 4 3 3 2 2 2

5

360 195 330 720 1120 460 230 560 184 49
( )

90 1

a c Ka x Ka a c x a c Ka x Ka a c x ac K
B x

ac ax

 − + − + − + − + −
 = −

−
  (23) 

The metric functions 2e λ  and 2e ν  can be written as 
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( )
( )

6
2

6

1

1

ax
e

ax

λ +
=

−
                                                                                        (24) 

( ) ( ) [ ]2 22 2 2
1 1 1 exp 2 ( )

A
e A c ax ax B xν = + −                                                               

(25) 

With ( )Z x , the tangential pressure is given by for 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

5 2 26 5

6 7 7 3

4 1 1 61 12 1 5
4

1 1 1 2 1
t

ax a x axax a ax Kax axy y
P x

y yax ax ax c ax

− − −− − +
= + − −

+ + + +

ɺɺ ɺ
                                 (26) 

The metric for this model is 

( ) ( ) [ ] ( )
( )

6
2 22 2 2 2 2

1 6

1
1 1 exp 2 ( ) sin

4 1

A2 2 2ax x
ds = A c ax ax B x dt + dx + (dθ + θdφ )

ccx ax

+
− + −

−
                          (27) 

3.2. Model II 

Following Mafa Takisa and Maharaj [27], we choose the form of electrical field given by 

( )
2

2
1

Kx
E

ax
=

+
                                                                                             (28) 

Substituting ( )Z x  and 2
E  in eq. (7) 

( ) ( ) ( ) ( ) ( )
( )

5 6 6 4 5 5 3 4 4 2 3 3 2 2

7

24 5 264 10 400 10 560 5 216 72

2 1

Ka x a c Ka x a c Ka x a c Ka x a c Ka x a c K x ac

ax
ρ

 − − + + − − + + − − + +
 =

+
  (29) 

With (29) in eq. (14) 

( ) ( ) ( ) ( ) ( )
( )

5 6 6 4 5 5 3 4 4 2 3 3 2 2

7

24 5 264 10 400 10 560 5 216 72

6 1
r

Ka x a c Ka x a c Ka x a c Ka x a c Ka x a c K x ac
P

ax

 − − + + − − + + − − + +
 =

+
  (30) 

Using (29) in (13), the expression of the mass function is 

( )
( )

( ) ( )

( ) ( ) ( ) ( )

2 2 2 6 5

4 3 2

3 32 96
( )

4 8 1 8 1 1

120 80 30 6

11 1 1

Karctag axK x K x x x
M x

a c c a c c ax a c ac c ax c ax

x x x x

c axc ax c ax c ax

= − − + − +
+ + +

− + − +
++ + +

                           (31) 

and for charge density 

( ) ( )
( )

26 2 2

2
10

1 6 9

1

Kc ax a x ax

ax
σ

− + +
=

+
                                                                  (32) 

Replacing (30), (28) and (15) in (8) it is obtained 
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( ) ( ) ( ) ( ) ( )
( )( )

( )
( )
( )

5 6 6 4 5 5 3 4 4 2 3 3 2 2

6

43 2 5 4

6 6

24 5 264 10 400 10 560 5 216 72

24 1 1

112 40 12

4 1 8 1

Ka x a c Ka x a c Ka x a c Ka x a c Ka x a c K ac
y

y c ax ax

Kx axa a x a x

ax c ax

 − − + + − − + + − − + +
 =

+ −

++ ++ −
− +

ɺ

  (33) 

Integrating (33) 

( )( ) [ ]2( ) 1 1 exp ( )
C

y x c ax ax D x= + −                                                         (34) 

where 
2

2

6

6

K a c
C

a c

+= −  and 

( ) ( ) ( ) ( )
( )

6 4 4 3 5 3 4 2 2 3 2

52

360 135 330 720 1120 370 200 560 184 43
( )

90 1

a c Ka x Ka a c x a c Ka x Ka a c x a c K
D x

a c ax

 − + − + − + − + −
 = −

−
  (35)

 

The metric functions 2e λ  and 2e ν  can be written as 

( )
( )

6
2

6

1

1

ax
e

ax

λ +
=

−
                                                                                       (36) 

( ) ( ) [ ]2 22 2 2
2 1 1 exp 2 ( )

C
e A c ax ax D x

ν = + −                                                                (37) 

the tangential pressure is given by for 

( )
( )

( ) ( )
( )

( )
( ) ( )

5 2 26 5

6 7 7 2

4 1 1 61 12 1
4

1 1 1 2 1
t

ax a x axax a axy y Kx
P x

y yax ax ax c ax

− − −− −
= + − −

+ + + +

ɺɺ ɺ
                               (38) 

and the metric for this model is 

( ) ( ) [ ] ( )
( )

6
2 22 2 2 2 2

1 6

1
1 1 exp 2 ( ) sin

4 1

C2 2 2ax x
ds = A c ax ax D x dt + dx + (dθ + θdφ )

ccx ax

+
− + −

−
                    (39) 

4. Physical Characteristics of the New 

Models 

The new generate models allow solve to the Einstein-
Maxwell system (7) - (12) and constitute another new family 
of solutions for a charged matter with anisotropy. These 
models must satisfy the following physical properties [28, 
34]: 

(i) The energy density is positive and a decreasing 
function of the radial coordinate; 

(ii) The radial pressure should be positive, finite and a 
decreasing function of the radial coordinate; 

(iii) Regularity of the gravitational potentials in the origin; 
(iv) Radial pressure must be finite at the centre; 
(v) Electric field intensity E  must be regular and well 

defined inside the solution. 

In the new obtained solutions, the metric functions 2e λ  and 
2e ν  can be written in terms of elementary functions and the 

variables energy density, radial pressure, charge density and 
tangential pressure also are represented analytical. In the 

model I, ( )2 0
1e

λ = , 
( )2 0 2 2

1
49 184

exp
45

K ac
e A c

ac

ν − =  
 

 in the 

origin and ( ) ( )2 ( ) 2 ( )

0 0
0r r

r r
e eλ ν

= =

′ ′
= =  at the centrer=0. This 

analysis demonstrates that the gravitational potentials are 
regular in the origin. The energy density is positive throughout 
the interior of the star, regular at the centre with value 

36acρ = . The radial pressure rp  is regular at the centre with 

value 12rp ac= . In the model II, ( )2 0
1e

λ = , 

( )
2

2 0 2 2
2 2

43 184
exp

45

K a c
e A c

a c

ν  −=  
  

 at the centre and 

( ) ( )2 ( ) 2 ( )

0 0
0r r

r r
e eλ ν

= =

′ ′
= = . Again, as in the model I, the 

gravitational potentials are regular at the centre. The energy 
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density andradial pressure take the values of 36acρ =  and 

12rp ac=  in r=0, respectively. In both classes of models, the 

mass function is continuous and behaves well inside the star 
and the charge density σ  not present singularity at the centre. 

5. Conclusions 

In this paper, we obtain two new solutions of the Einstein-
Maxwell field equations for charged anisotropic matter with a 
barotropic equation of state and a particular form of the metric 

potential ( )Z x . The new class of obtained solutions is 

physically acceptable and may be used to model relativistic 
stars in different astrophysical scenes. In the new obtained 
models the gravitational potentials are regular at the origin r=0 
and well behaved. The radial pressure and energy density are 
regular and positive throughout the stellar interior. The charge 
distribution not admits singularities at the centre and the mass 
function is an increasing function, continuous and finite. The 
new obtained solutions show the usefulness of the Einstein-
Maxwell system of equations in many astrophysical 
applications. 
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