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Abstract: The aim of the electromagnetic non-destructive testing is the determination of structural defects in conductive 

materials by excitation of eddy-currents using an external alternating magnetic field and measuring a secondary field produced 

by these currents. For a reliable control of defects in a conductor it is necessary to find out how a certain form of defect distorts 

the primary magnetic field. For this purpose, we use the method of approximate calculation of the distribution of magnetic 

fields arising at eddy-currents flow around defects of a conductor. We consider the approximation when the thickness of a skin 

layer is much greater than the sizes of the defect. In this case the problem of determining the scattering fields splits into two 

independent stages. Initially the distribution of currents in the vicinity of the defect is determined. This stage is reduced to the 

Neumann problem for the Laplace equation. At the second stage the restore of the magnetic field using the found currents is 

performed. In the framework of the method two problems were resolved: we obtained the distributions of the magnetic field at 

current flow around surface defects in the form of a hemisphere and half of an oblate spheroid.  

Keywords: Eddy-Current Non-destructive Testing, Electromagnetic Non-destructive Testing, Eddy-Currents,  

Current Distribution, Magnetic Field Distribution 

 

1. Introduction 

The electromagnetic or eddy-current non-destructive 

testing is one of the most widely used methods for detection 

of defects in metal products (especially in weak-magnetic 

metals) [1-6]. This method is based on the excitation of 

induction currents in the controlled area of the sample by 

using an alternating magnetic field (MF) and measuring a 

secondary field generated by these currents. Taking into 

account the measured signal (for instance, using an electro-

moving force induced by induction currents fields in the 

receiving coil), we can conclude whether any defects are 

presented in this area. Usually a signal from the controlled 

area compares with a signal from the area containing no 

defects.  

To obtain a reliable information on the size of the defect, 

its shape and depth it is necessary to compare the topography 

(distribution) of MF, created by induced currents over the 

area of the sample containing no defects, with that one over 

the area with defect.  

The definition of MF topography in the area of the defect 

with a predetermined configuration is the goal of the present 

study. From the point of view of electrodynamics this is a 

problem of the finding the distribution of the electromagnetic 

field (EMF) in the system of conductors and insulators 

neighboring with each other for given external field sources.  

The fields are determined by solving the Maxwell’s 

equations [7, 8] customized for each of the media:  

1
rot

c t

∂= −
∂
B

E                                (1a) 



49 Yurii I. Dzhezherya et al.:  Calculation of Scattering Magnetic Fields, Arising at Current Flow   

Around Defects, as Applied to Electromagnetic Non-destructive Testing 

( )1 4
rot e

c t c

π∂= + +
∂
D

H j j                 (1b) 

div 0=B                             (1c) 

div 4 eπρ=D                          (1d) 

Subject to conditions at the interfaces between the 

dielectric and conducting media we have  

1 2n nB B= , 1 2H Hτ τ= , 1 2 1 20, 0n nE E D Dτ τ= = = =    (2) 

Here the indices 1 and 2 refer to the 1st and 2nd adjoining 

media, index n  refers to the component of the corresponding 

vector which is normal to the interface, and the index τ  – to 

the tangential component, and also the material equations 

relating the stress vectors E , H  and the induction of the 

electric and magnetic fields, correspondingly: ( )D E , 

( )B H . Here eρ  is the density of the external charges 

(hereinafter 0eρ = ), ej  and j  are the current densities: ej  

corresponds to the external sources of EMF, j  – to the 

induction one.  

This problem is difficult for analytical investigation and 

not always can be solved exactly, even when the boundaries 

between the media and the field sources have a simple form.  

Therefore certain simplifications in the formulation of the 

problem are required basing on the practical demands of non-

destructive testing.  

2. Quasi-stationary Approximation 

Since high frequency EMP penetrate into the conductor to 

a small depth, the fields whose frequency does not exceed a 

few hundred kilohertz are used for non-destructive testing. 

The range of frequencies used is limited from below to about 

a hundred Hz to avoid interference from household 

appliances, operating at frequencies of 50 60−  Hz.  

We assume that the size of the defect is significantly less 

than the characteristic distances over which the magnetic 

field created by an external source significantly changes. 

This situation is easily realized in practice, for example, to a 

low-frequency magnetic field at a great distance from the 

source of the field or when the size of the source is much 

greater than the size of the defect. In this case, we can 

consider a fragment of a sample with a defect like staying in 

a uniform external field (Fig. 1). We assume that the 

parameters of the system satisfy the following conditions:  

0 ,z d λ<<
 

where 0z  is the depth of the defect, d  is the defect size, λ  

is the characteristic scale of the magnetic field variation. As 

already mentioned, the parameter λ  is specified by the sizes 

of the field source or by the distance between it and the 

location of the defect.  

As shown in Fig. 1, the Oy  axis in the area of the defect is 

selected in parallel to the external field.  

To calculate the EMF with frequencies 0.1 100−  kHz, we 

can use the Maxwell’s equations in the quasi-stationary 

approximation [7, 8], which is as follows. If the characteristic 

time T  of EMF changes significantly exceeds the 

propagation time of the field, i.e., T l c>> , in other words, 

the wavelength λ  of the EMF is much larger than the system 

size l , i.e., lλ >> , the time derivatives in Eqs. (1) are 

significantly less than the space ones. Therefore, in 

calculation of the fields in the quasi-stationary approximation 

it is reasonable to neglect the displacement current ( )1 c ⋅ Dɺ  

in Eq. (1b) (the dot here and below denotes the derivative 

with respect to time). It is necessary to leave the time 

derivative in (1a) otherwise the relation between changes in 

the electric and magnetic fields is lost.  

The quasi-stationary approximation is further basis for 

calculating the EMF.  

Next, we assume that the medium under consideration are 

linear and isotropic, i.e., the material equations are written in 

the simplest way:  

ε=D E , µ=B H                             (3) 

where ε  and µ  are the permittivity and magnetic 

permeability of the media, correspondingly. The conductors 

obey the Ohm’s law and have a constant conductivity σ :  

σ=j E                                         (4) 

As periodic established EMFs are used for non-destructive 

testing, let us make one more simplification. We assume that 

the dependences of the external current, and hence the 

electric and magnetic fields, on time are strictly harmonic:  

ej , E , H ( )~ exp i tω  

Accordingly, in the equations the dependence of these 

quantities on time will appear instead of the time derivative 

of the factor iω  in front of the corresponding value, for 

example, iω=E Eɺ .  

The induced currents in the conductor are also subject to 

certain equations similar to those of EMF [8]:  

2

4
0

tc

πµσ ∂∆ − =
∂

j
j                             (5) 

The boundary conditions for the currents are clear: the 

current component normal to the boundary of the conductor 

should be equal to zero:  

0n S
j =                                       (6) 

When the external current ej  is time dependent 

harmonically, then Eq. (5) has the form of the Helmholtz 

equation  

2 0k∆ + =j j                                   (7) 

with an imaginary coefficient  
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2
2

2

4 1 i
k i

c

πµσω
δ
− = − =  

 
, 

2

cδ
πµσω

=              (8) 

The parameter δ  has the dimension of length and is a 

measure of the penetration of a variable EMF in the 

conductor. (The concentration of a variable EMF near the 

surface of the conductor is called skin effect, and δ  is the 

skin depth [7, 8].) It is evident that the penetration depth 

depends on the conductivity and permeability of the material 

and, as already noted, on the frequency of EMF.  

The latter circumstance is essential for non-destructive 

testing. Firstly, the internal defects occurring at different 

depths, while changing the frequency of the primary field 

should likely produce a different contribution to the induced 

EMF, and based on this can be found. Secondly, the signal 

from the surface defect must depend on the relation between 

the frequency of EMF and depth of the defect. By means of it 

the depth of the defect can be estimated.  

These assumptions provide an important reason to 

consider the problem of finding the distribution of the 

induced EMF at an arbitrary frequency of the primary field 

ω  or the depth of the skin layer δ .  

However, in its solving the substantial mathematical 

difficulties associated with the need to solve various 

equations for dielectric and conductor, and then “sew” the 

solutions using the boundary conditions (2), arise.  

The situation is considerably simplified in the limit of high 

and low frequencies. The small those at which the skin depth 

is much greater than the linear size d  of the defect or its 

depth h : { }max ,d hδ >> . The large frequencies are 

corresponded to the inverse conditions, { }max ,d hδ << .  

These limiting cases are interesting both by themselves 

and from the point of view of determining the qualitative 

nature of the distribution of EMF above the defect, if at an 

arbitrary skin depth the obtaining of an analytical solution is 

impossible. A possible interest also related with the fact that 

at numerical solution of the problem it is necessary to check 

the computational model and the selected numerical method 

on the problem for which the analytical solution is known.  

Let us consider the first limiting case in more detail.  

3. The Method of Approximate 

Calculation of Magnetic Field 

Distribution at a Great Depth of the 

Field Penetration 

Since at the non-destructive testing of a sample the signals 

from the defect-free region and from the region containing 

the defect are compared, we will be interested, first of all, in 

the supplement to the MF associated with the presence of the 

defect, which we will call a scattering field.  

Let us calculate the scattering fields generated at induction 

current flow around defects of a simple form in the limit of a 

large depth of the skin effect. 

In this case, the induced current in a conductor assumed to 

be homogeneous far from the defect. Moreover, if the area of 

the sample with the induced currents have cross-sectional 

dimensions much larger than d  (that is technically easy to 

implement), then it is possible to reduce the problem to the 

following simple form.  

Far from the defect we have a uniform current 0j . It is 

necessary to find current changes ( )j r  caused by a defect, 

and then calculate the MF by the Biot-Savart-Laplace’s law:  

( ) ( )

1

3

1

V

dV
c

′ ′ × − ′=
′−∫

j r r r
H

r r
                   (9) 

Here r  and ′r  are the radius vectors of the observation 

point and the integration volume element, correspondingly. 

The integration is performed over the entire volume of the 

conductor 1V .  

To solve this problem we should know the explicit form of 

the function ( )j r .  

In the first approximation by the small parameter d δ  the 

distribution of the induced current ( )j r  does not depend on 

frequency and is described by the same equations as the 

distribution of direct current [7, 8]:  

div 0=j , rot 0=j                          (10) 

The fact that it is variable will be expressed with the help 

of a multiplier ( )exp i tω .  

Only the shape of the boundary surfaces of the conductor 

and defect affects the particular type of ( )j r . This is 

reflected in the accounting of boundary conditions (6) for the 

solution of Eq. (10).  

In solving of Eq. (10) one should also take into account 

that at the distance from the defect the current becomes 

uniform:  

( ) 0→ ∞ =j r j                                  (11) 

Using a potential character of ( )j r  ( rot 0=j ), we can 

introduce a current potential ϕ  in a standard way:  

gradϕ=j                                     (12) 

and reformulate the problem of finding the current 

distribution for the potential ( )ϕ r  as follows:  

0ϕ∆ =                                      (13) 

0
Sn

ϕ∂ =
∂

, ( ) 0 0ϕ ϕ→ ∞ → =r j r  

where n∂ ∂  denotes the derivative with respect to the 

normal to the surface of the conductor, 0ϕ  is the potential of 

a uniform current.  

In the form of (13) the problem under consideration is the 
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Neumann’s problem for the Laplace equation, and the 

mathematical formalism of its solving is a well-developed [9, 

10].  

The MF defined by (9) is not yet a scattering field, it is a 

complete MF outside the conductor. Let us select from it just 

that component, which is due to a current flow around the 

defect.  

Without a defect, the current would be uniform ( ) 0=j r j  

in the whole conductor, and the field outside the conductor 

would be equal to  

( )

1 2

0

0 3

1

V V

dV
c

+

′ × − ′=
′−∫

j r r
H

r r
                 (14) 

where 2V  is the volume of the defect.  

The presence of the defect distorts the current distribution, 

so that in its vicinity we have  

( ) ( )0ϕ δϕ= +r j r r , ( ) ( )0 δ= +j r j j r               (15) 

The components ( )δ j r  and ( )δφ r  satisfy the same 

equations as functions ( )j r  and ( )φ r , however, for other 

conditions far from the defect and on the surface of the 

conductor, for example:  

0δϕ∆ =                                         (16) 

0
Sn

δϕ∂ =
∂

, ( ) 0δϕ → ∞ →r  

The difference between the MFs of the conductor with and 

without defect represents the scattering field 0δ = −H H H :  

( ) ( ) ( )

2 1

0

3 3

1 1

V V

dV dV
c c

δ
δ

′ ′ ′   × − × −   ′ ′= − +
′ ′− −∫ ∫

j r r j r r r
H

r r r r
 (17) 

Here in the first term the integration is performed over the 

volume of the defect, in the second term – over the volume of 

a conductor.  

The calculation of the scattering field, instead of 

calculating the total MF, has a significant advantage because 

its distribution gives a picture of the currents MF distortion 

by a defect.  

This is especially convenient for comparison with an 

experiment, as when performing the measurements in the 

field of eddy-current non-destructive testing it is important to 

extract a signal induced by a defect using either differential, 

compensation methods, or the fact that the field due to a 

defect has a direction different from the field induced over 

the defect-free area.  

In addition, the scattering field is more convenient to 

calculate both analytically and numerically.  

For example, the influence of the surfaces of a conductor 

which are distant from the defect on the current distribution 

near the defect is negligible. To exclude it from a 

consideration, one can imagine that the conductor occupies 

infinitely large area, such as half-space. In this case the 

integrals over the volume of a conductor in (9) are divergent 

because their integrands do not vanish at infinity. On the 

contrary, the integrals over the volume of a conductor in the 

expression for a scattering field (17) give the finite values 

because the components to the current or potential vanish at 

infinity.  

 

a 

 

b 

Fig. 1. Internal defect (a) and surface defect (b).  

Using the Gauss’ theorem let us rewrite the expression for 

a scattering MF in the form that contains only the surface 

integrals, and therefore has an advantage at the numerical 

analysis:  

( )

2 3 1 2

0

1 1 1

S S S S

d d
c c

δ
δ

+ −+ +

′
′ ′= − × − ×

′ ′− −∫ ∫
j r

H j S S
r r r r�     (18) 

Here 3S  is the surface which “closes” the defect. 

Respectively, if the defect is internal (Fig.1a), the integration in 

the first integral is carried out only on 2S . Further, in (18) it 

should be taken into account that at integration over the 

surface of the defect 2S , the vectors d ′S  in the first term and 

in the second one should be oppositely directed. Respectively, 

2S
+

 denotes the case when the normal to the surface of the 

defect is directed outwards, 2S
−

 – inside the defect.  

Before turning to the specific calculations, we note that all 

the obtained results can be used also in relation to the current 

non-destructive testing when direct or alternating current is 

passed directly to the test sample [11].  

Now, when the mathematical aspect of the study is 

specified, let us consider a number of problems on the 

current flow, which is uniform at infinity, around single 
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defects of a simple form in semi-infinite conductor.  

4. Surface Defect in the Form of a 

Hemispherical Recess 

We begin with a surface defect in the form of a hemisphere 

in a conductor with a flat surface occupying a half-space. We 

choose a Cartesian coordinate system with the origin at the 

center of the base of the hemisphere and with Oz  axis 

perpendicular to the surface of a conductor. The Ox  axis is 

directed along the current at infinity (Fig. 2).  

 

Fig. 2. Surface defect in the form of a hemispherical recess.  

To find the distribution of ( )j r  the equation for the 

current or potential, together with the boundary conditions on 

the flat surface of a conductor and on the surface of a 

hemisphere, should be solved.  

This problem is fully equivalent to finding the velocity 

field at the potential flow of a body of corresponding form by 

inviscid incompressible fluid [12-14].  

Its solution for a sphere is well known [12-14]. For the 

boundary surface in the form of a plane with a hemispherical 

convex it should have the same form. This is obvious, since on 

the plane passing through the center of a sphere and parallel to 

the velocity of fluid at infinity the condition of zero normal 

velocity component is fulfilled automatically by symmetry:  

( )
3

2
0 0 0 0 5

1
3

2

R
r

r
δ  = + = + − j j j j j j r r            (19) 

To find the field, let us substitute (19) into (18) taking into 

account that 0 0 xj=j e , zd dS′ ′=S e  for 1S  and 3S , 

d dS′ ′ ′= ±S n , r R′ =  for 2S±
, r′ ′ ′=n r . As a result, we 

obtain  

32

1

0

3
2

5

3 1 1

2

1 3 1

2 2

x y

SS

z x

S

c
dS dS

j

R
dS r x

r

δ
+

′ ′ ′⋅ = − × + −   ′ ′− −

  ′ ′ ′ ′− × −   ′−′  

∫ ∫

∫

H e n e
r r r r

e e r
r r

  (20) 

Each of the integrals in (20) in the spherical coordinate 

system  

( )sin cos , sin sin , cosr r rθ α θ α θ=r
 

where 0 r≤ < ∞ , 0 2θ π≤ ≤ , 0 2α π≤ ≤ , is a particular 

case of the integrals of the form  

( ) ( ) ( ) ( )2 2 2

1 1 1

1 2 3

r

r

f r f f
F dr d d

θ α

θ α

θ α
θ α

′ ′ ′
′ ′ ′=

′−∫ ∫ ∫r
r r

 

It is difficult to calculate them analytically, but it is 

possible to obtain an approximate result using the inverse 

distance decomposition in spherical harmonics:  

( )
( ) ( ) ( )

1

!1
cos cos

!

n n
im im

nm nmn
n m n

n m r
P P e e

n m r

α αθ θ
∞

′−
+

=−

− ′ ′=
′− +∑ ∑

r r
 for 

r r ′>  

where ( )cosnmP θ  are the associated Legendre polynomials 

[9, 10].  

Then the corresponding integrals shall be expressed by a 

double sum on m  and n , in each term of which the 

integration with respect to the groups of variables α ′ , θ ′  

and r′  will be performed independently.  

Thus, as a result of integration, we obtain the expansion of 

the field components in a series of spherical harmonics, each 

of which satisfies the Laplace equation.  

By the described above trivial, but rather cumbersome 

transformations, we obtain the following expressions for the 

components of MF:  

( ) ( )
( )( ) ( )

( )
3 1

20
22 2 1

2

0 2 1
3 sin cos cos

22 1 1

n
n

x nn
n

Pj R n R
H P

c nr rn n n n
δ π α α θ

∞ −

−
=

 += − ⋅ −  ++ − +  
∑r , r R>              (21) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( )

( )

3 3 1
0 0

2 2 1
2

3 1
20

22 2 1
2

01 3 2 1
cos cos

4 2 1 2 3

03 2 1
cos 2 cos

2 21 1 2

n
n

y nn
n

n
n

nn
n

n Pj jR R n R
H P

c c n n nr r r

Pj R n R
P

c nr rn n n n

δ π θ π θ

π α θ

∞ −

−
=

∞ −

−
=

 ⋅ + = − + ⋅ + +    − + ⋅   

 ++ ⋅ −  +− + +  

∑

∑

r

, r R>                (22) 

( ) ( )
( )( ) ( )

3 2
0 0

12
2

0
sin sin 3 sin cos

2 1

n
n

z nn
n

Pj jR R R
H P

c c r n nr r
δ π θ α π α θ

∞

=

= − ⋅ − ⋅ ⋅
+ −∑r , r R>                    (23) 

j0

S1

S2

S3

x

y

r

z
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Basing on these relations we come to the following 

conclusions which are of particular interest in non-

destructive testing. 

First, the scattering MF decreases sufficiently rapidly with a 

distance from the defect as 
2

1 r  at large distances ( r R>> ). 

Second, the principal terms of the expansion of MF are 

proportional to 3
R , i.e., to the volume of defects.  

The dependence of the scattering field components xHδ , 

yHδ , zHδ  on coordinates in the plane of a sample, which is 

just scanned for non-destructive testing, is shown in Fig. 3.  

Let us compare the results obtained analytically with 

experimental data.  

In works [15, 16] (see also [2]) the peculiarities of the 

topography of the magnetic field on the surface defects such 

as a gap, flown by a direct current or alternating current, in 

plane non-magnetic and ferromagnetic samples were studied. 

The investigations were conducted on slabs of 13-15 mm 

thickness with large transverse dimensions. The sizes of gaps 

were ranged within the following limits: width of 0.5 mm, 

depth of 2-13 mm, and length of 7.5-60 mm. The density 

values of a direct current and alternating current were equal 

to 
2

20А smj = . For all measurements the current was 

directed perpendicular to the long side of a gap. The 

measurements of the defects’ field in the plates were 

performed by the fluxgate method.  

 

(a) 

 

(b) 

 

(c) 

Fig. 3. The dependences of the scattering MF components xHδ  (a), yHδ  

(b), zHδ  (c) on coordinates x  and y  for the values 1=R , 0.001=z . 

The MF values are plotted along the Oz  axis in 0j c  units for the 

Gaussian system of units, and in 0 4j π  – for SI.  

 

 

Fig. 4. a) The dependence of the normal field component above the gap on 

the coordinate perpendicular to the current (gap width is 0.5 mm; depth is 4 

mm; length is 60 mm) for: 1 – direct current; 2 – alternating current 
(experiment in [15]). b) The dependence of the normal component of the 

scattering MF for the surface defect in the form of a hemisphere on the 

coordinate perpendicular to the current (
2

0 20А см=j , 5≈R mm , 

0.01= ⋅z R ).  
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In Figs. 4a, 5a the obtained dependences for the MF above 

the gap on one of the coordinates in the plane of a sample at a 

fixed other coordinate and fixed distance from the sample. In 

Fig.4a the field components perpendicular to the surface of 

the sample are presented. In Fig.5a the field components in 

the direction of the current are represented. In Figs. 4b, 5b we 

demonstrate the comparison of the dependences of the 

corresponding scattering MF components for the 

hemispherical recess.  

 

 

Fig. 5. a) The dependence of the field component above the gap along the 

current on the coordinate parallel to the current (gap width is 0.5 mm; depth 

is 4 mm; length is 60 mm) for: 1 – 15=x mm ; 2 – 30=x mm ; 3 – 

37=x mm ; 4 – 48=x mm  (experiment in [15]). b) The dependence of the 

scattering MF component along the current for the surface defect in the form 

of a hemisphere on the coordinate parallel to the current (
2

0 20А см=j , 

5≈R mm , 0.01= ⋅z R ).  

Despite the difference between the locations of the defects 

and the directions of electric current in the experiment [15, 

16] and presented theoretical calculations, we note a 

qualitative agreement of the compared dependencies. The 

quantitative differences between the field components 

associated with mismatch of the problems geometry. The 

defects have a different shape, in this case the sample is 

regarded as a semi-infinite, in [15, 16] the plate thickness is 

comparable to dimensions of the gap. Also in [15, 16] it is 

not specified, at what distance from the surface the magnetic 

fields were measured (Fig. 4a and Fig. 5a).  

Now, when an asymptotic behavior of the scattering MF at 

infinity and the dependence of the field on the defect’s size 

are clarified, it is interesting to trace the dependence of the 

field topology on the defect’s shape. In terms of non-

destructive testing it is important to answer the question 

whether it is possible to restore the shape of the defect by 

measurements of MF distribution.  

5. Surface Defect in the Form of Half of 

an Oblate Spheroid, Cut Along the 

Short Axis by a Conductor Plane  

 

Fig. 6. Surface defect in the form of half of an oblate spheroid, cut along the 

short axis. Left – side view; right – top view.  

In Sec. 4 we discussed the MF in the vicinity of a surface 

hemispherical defect. The form of real defects is much more 

complicated. Among surface defects the extended narrow 

slits are the most frequent [1-3].  

For the defect of such a form the analytical expressions for 

the distributions of current density ( )δ j r  and MF ( )δ H r  

could not be obtained.  

We choose a model defect with a shape to some extent 

close to that of actual defects and for which an exact 

expression ( )δ j r  could be obtained.  

A cavity in the form of half of an oblate spheroid, located 

on the surface of the semi-infinite conductor (Fig. 6), can 

serve as a model for such a defect. An oblate spheroid is a 

figure formed by rotating an ellipse along the minor axis. It 

will be similar to a narrow slot if its long axis c  is 

substantially longer than the short one a .  

We choose a coordinate system with Oz  axis 

perpendicular to the sample surface. Ox  axis is directed 

along the minor axis of the spheroid.  

Suppose that the current density vector (at infinity) is 

directed randomly in xOy  plane. We define its orientation by 

angle α  measured from Ox  axis. Then we have  

0 0 0 0cos sinj x j yφ α α= = ⋅ + ⋅j r               (24) 

Since the conductor plane divides the spheroid in half, to 

find the current distribution in the vicinity of the defect, it is 

enough to consider an equivalent problem of the current flow 

of a whole spheroid.  
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j0
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x

y
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The solution of this problem is known [14]. It is compactly 

represented in the spheroidal coordinate system [9, 10]:  

( )1 , cos , sinc ζξ ρ θ ρ θ=r
 

where ( )( )2 2
1 1 1cρ ζ ξ= + − , 

2 2
1c c a= −  is the focal 

length, the variables ζ , ξ  and θ  are ranged within the 

corresponding limits: 0 ζ≤ < ∞ , 1 1ξ− ≤ ≤ , 0 2θ π≤ ≤ .  

According to [14], the current distribution has the 

following form:  

( ) ( )0 1 1 0 2 2cos cosj x G g j y G gδφ α ζ α ζ= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ,   (25) 

( )1

1 1
arctgg ζ

ζ ζ
= − , ( )2 2

1
arctg

1
g

ζζ
ζ ζ

= −
+

 

1
2 2

1 1
1 3 3

1 1

1 arctg
c cac ac

G
a ac c

−
  = ⋅ − −  

   
1

2 2
1 1

2 3 3 2
1 1

2 arctg
c acac ac

G
ac c c

−
  = ⋅ − −  

   
 

Further, in order to calculate the scattering MF, we need to 

substitute the obtained current distribution in one of its 

calculation formulas. We use the following representation for it:  

( ) ( )

2 3 1 2

0 3

1 1 1

S S S S

d d
c c

δφ
δ

+ −+ +

′
′ ′ ′ = − × + × − ′− ′−∫ ∫

r
H j S S r r

r r r r
�

  (26) 

At the integration over the surfaces 1S , 2S−
 in (26) it is 

necessary to put  

( ) ( )( )2 2 2 2 2
1 3 1 1 1zd d dx dy c d dζ ξ ζ ξ ζ ξ′ ′ ′ ′= = = + + −S S e  

( )2 2 2 2 2 2
2 11 1 cos 1 sinx y zd ac c a d d c ac ac d dζ ξ ξ θ ξ ξ θ ξ θ ξ θ±′ = ± + = ± + − + −S e e e e

 
and to write a distance in a 

spheroidal coordinate system:  

( ) ( )( ) ( )( )
2 2

2 2 2 2 2
1 1 11 1 cos 1 1 sinx c y c z cζξ ζ ξ θ ζ ξ θ   ′− = − + − + − + − + −   

   
r r  

As a result, the expressions for each component of the 

scattering MF are reduced to the sum of rather cumbersome 

integrals. Let us present an expression only for z  

component:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )51 2 3 4 6
0

cos sin
z z z z z z

z

c
H I I I I I I

j
δ α α   ⋅ = + + + + +      

r r r r r r                            (27) 

( ) ( )
1

2 1 2

1

1

1 cosz

a c

I ac d d

π

ζπ

ξ θ
θ ξ

=−

−
= −

′−∫ ∫r
r r

 

( ) ( )
( )

1

2 22 1

2
1 12 3

1 1

1 cos
z

a c

y c
a

I ac G g d d
c

π

π ζ

ξ ξ θ
θ ξ

− =

− − 
= −  

′− 
∫ ∫r

r r
 

( ) ( ) ( )

1

2 1 2
2

1 13 3
1 1

1 cosz

a c

x aa
I a cG g d d

c

π

π ζ

ξ ξ θ ξ
θ ξ

− =

− − 
=  

′− 
∫ ∫r

r r
 

( ) ( )
1

2 1

2
4

1

z

a c

I c d d

π

ζπ

ξθ ξ
=−

=
′−∫ ∫r

r r
 

( ) ( )
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1

2 22 1

3
2 25 3

1 1

1 cos 1 cos
z

a c
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a

I c G g d d
c

π

π ζ

ξ ξ θ ξ θ
θ ξ

− =

− − − 
= −  

′− 
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r r

( ) ( ) ( ) ( )

1

2 22 1

2
2 26 3

1 1

1 cos
z

a c
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c

π

π ζ

ξ θ ξ
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− =
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=  

′− 
∫ ∫r
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To calculate these integrals we can use the expansion of 

the inverse distance in spheroidal harmonics [9, 10].  

Let us proceed differently: we calculate the MF 

components numerically.  

In Fig. 7 we present the dependences of the scattering field 

components on coordinates in the plane of the sample at the 

parallel and perpendicular orientations of the current vector 

0j  (at infinity) with respect to the short axis of the spheroid. 

The ratio between the axes is 1 10a c = .  

The isolines presented in Fig. 8 give a qualitative picture 

of the distribution of MF components in accordance with the 

dependences in Fig. 7.  

It follows from the analysis of these figures that, basing on 

the distribution of MF over a defect, we can obtain the 

information not only about its location and orientation of the 

defect in the sample, but also about the relationship between 

its transverse and longitudinal dimensions.  

To estimate the depth of the defect is necessary to measure 

the value of MF at different distances from the surface of the 

conductor. Besides, an additional information about the 

defect could be obtained by measuring variable fields at 

different frequencies of the primary EMF. However, to solve 

the latter problem it is necessary to determine not an 
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approximate but an exact distribution of MF at an arbitrary 

depth of the skin layer.  

 

(a1) 

 

(a2) 

 

(b1) 

 

(b2) 

 

(c1) 

 

(c2) 

Fig. 7. The dependences of the scattering MF components: a1, a2) xHδ ; 

b1, b2) yHδ ; c1, c2) zHδ  on x  and y  coordinates for 0.2a = , 10c a= , 

0.1z a= . The index 1 corresponds to 0α = , index 2 – to 2α π= . 

0.001z = . The values of MF are plotted along Oz  axis in 0j c  units for 

the Gaussian system of units, and in 0 4j π  – for SI.  
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(a1) 

 

(a2) 

 

(b1) 

 

(b2) 

 

(c1) 

 

(c2) 

Fig. 8. The isolines of scattering MF components: a1, a2) xHδ ; b1, b2) 

yHδ ; c1, c2) zHδ  for 0.2a = , 10c a= , 0.1z a= . The index 1 

corresponds to 0α = , index 2 – to 2α π= . The values of MF are referred 

to 0j c  for the Gaussian system of units, and to 0 4j π  – for SI.  
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